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ABSTRACT In this paper, a swarm intelligence optimization algorithm is proposed as the Shrike Optimization Algorithm
(SHOA). Many creatures living in a group and surviving for the next generation randomly search for foods; they follow the
best one in the swarm, called swarm intelligence. Swarm-based algorithms are designed to mimic creatures’ behaviors, but in
the multi-modal problem competition, they lack the ability to find optimal solutions in many cases. The main inspiration for
the proposed algorithm is taken from the swarming behavior of shrike birds in nature. The shrike birds are migrating from their
territory to survive. However, the SHOA mimics the surviving behavior of shrike birds for living, adaptation, and increasing.
Two parts of optimization exploration and exploitation are designed by modeling shrike breeding and searching for foods to
feed nestlings until they get ready to fly and live independently. This paper is a mathematical model for the SHOA to perform
optimization. The SHOA benchmarked 29 competitive, well-known mathematical test functions and four real-world
engineering problems with different conditions, both constrained and unconstrained. The statistical results show the proposed
SHOA can perform nearly ideal results when compared with other well-known algorithms for multi-modal problems. The
results for engineering optimization problems show the SHOA outperforms other nature-inspired algorithms.

INDEX TERMS Shrike, Optimization, Constrained Optimization, swarm Intelligence, multi-modal, meta-heuristic,
population-based optimization, engineering problem.

I. INTRODUCTION

Optimization techniques have become important in the last few decades. Optimization is finding the best optimal or semi-
optimal solution by achieving a specific objective without violating constraints. In some cases, no objective functions exist, but a
feasible solution depending on constraints is an optimal solution, called a feasibility problem. Many complex and rough-solvable
problems in engineering, science, medicine, statistics, and computer science have been solved by optimization algorithms within
a short time. Mathematical calculation and programs have been used to solve such a problem, but recently, for solving complex
problems, some meta-heuristic optimization algorithms have been used to find acceptable solutions. Many optimization
algorithms are nature-inspired algorithms designed by mimicking creatures from nature; many of those algorithms depend on
swarms’ social behavior and are called swarm-based algorithms.

Optimization algorithms have been classified as single-based and population-based. Single-based optimization searches for an
optimum solution using a single solution like simulated Annealing (SA), Hill Climbing (HC), Variable Neighborhood Search
(VNS), and Tabu Search (TS) [1-4], while the population-based optimization algorithms using a group of solutions as population
and searching around number of the neighbor of the solutions in the search space, but is should has good exploration and
exploitation techniques to not trap in the local optima, population-based like Genetic Algorithm (GA) [5], Differential Evaluation
(DE) [6], Genetic Programming (GP) [7], and swarm-based algorithms.

Swarm-based algorithms are stochastic because they work on the Swarm Intelligence (SI) of the creature's behavior. Ant Colony
Optimization (ACO) [8] is an old algorithm that studies the collective behavior of ants searching for food sources. It simply
translates the fact that every ant has its own decision for foraging on a specific path, each ant signs the path by pheromone when
it transits to the food source, and it will add pheromone again when returning to the nest, so other ants will take a path with higher
pheromone and leave their path, then the shortest path will be accomplished by leaving the low pheromone path and use the
higher-level pheromones path. Ant System (AS) [9,10] applied to solve various combinatorial optimization problems. The
application of AS includes the Traveling Salesman Problem (TSP), the Quadratic Assignment Problem (QAP), and the Job-shop
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Scheduling Problem (JSP), it shows the ability to solve those problems, also applied in the classification field [11], and cloud

computing [12].

Particle Swarm Optimization (PSO) [13] mimics the inspiration of SI of birds, and fish while the author considered birds,
simple techniques were used that birds follow the flock fly direction, the best food source obtained so far, and the best food sources
that swarm found, simply it uses rules to find the best solution in the search space, and it is applied in many fields of design, image
processing, and others [14,15] which successfully improve solutions. The society and Civilization algorithm [16] is the adaption
of societies simulated for optimization problem-solving. Artificial Bee Colony (ABC) works on honey bees finding food sources
in [17,18], it works on how explored bees find food sources and share information with employed bees, the onlooker bees exploit
food sources more to find better sources and keep the best food source, ABC outperforms many optimization algorithms for some
optimization problems of global optimization, feature selection, neural network fields, vehicle routing [19-23]. Bacterial Foraging
Behavior (BFO) the bacterial foraging behavior has been a source for development, applied for electrical power filter problems,
and designed fuzzy control for the system [24-26]. Firefly Algorithm (FA), the flashing light and attractiveness of fireflies were
formulated as FA algorithm, used to solve multi-modal problems, design structure, and many other applications [27,28]. The
moth-flame Optimization (MFO) Algorithm [29] was developed by studying moths' navigation in nature and how they move
around lights. Solving problems with clustering suffers from exploration the MFO is added to handle the clustering problem[30].
Since the reviewed methods initially were proposed, the researchers have worked to enhance or implement them in many domains
and for various challenges [31-39]. Recently, many researchers working to improve old and new algorithms to apply to variant
types of problems.

The effective application of swarm-based algorithms by the scientific and business communities has demonstrated the worth
of these methods in practice. The benefits of SI-based algorithms are the reasoning success of the algorithms mentioned before.
Swarm-based optimization methods work with groups as a population and have some randomness during searching for a solution.
A population has some drawbacks as it needs more computation time, but nowadays, high-speed processors and parallel
programming will solve this problem. Despite all optimization algorithms, there is no universal algorithm used to solve all
optimization problems. Still, some algorithms outperform others in many types of optimization problems. The researchers are
working to find an algorithm that outperforms other algorithms for most of the problems or find new algorithms that can solve
unsolved problems.

This paper proposes a novel swarm-based SHOA to increase the number of solved multi-modal and complex problems because
none of the optimization algorithms can solve all problems. Depending on the nature of the problem, a specific algorithm must be
applied to find the best solution. Intensification and diversification are the essential components of meta-heuristic algorithms. The
main contributions of this study are:

1. The proposed SHOA is designed for multi-modal problems by finding many local optima and keeping them to produce global
optima because multi-modal problems have many local optima and many optimization algorithms lack the ability to find the
global optima.

2. In the SHOA mathematical proposal produced, depending on the shrike bird’s physical simulations of a parent bird's
dominance in a specific life stage, the roles of female and male birds were separated depending on reality and life style.

3. The SHOA, applying randomization will diverge the algorithm from the current solution, which is considered a local
optimum, and redirect the algorithm to search the space globally to increase diversity, while finding a solution during the
local search by choosing the best solution so far will converge the algorithm to an optimal solution, increasing convergence.

The remainder of this article is structured as follows: (Part II) presents inspiration from shrike birds and a mathematical model
for the proposed SHOA (Part III) results and discussion on comparative benchmarks and some competitive functions, and (Part
IV) SHOA applied real-world cases, studies as engineering problems and the performance compared with other optimization
algorithms, finally (Part V) conclude the work of this study and show direction for coming studies.

Il. SHRIKE BIRDS

A. SOURCES OF INSPIRATION FOR SHRIKES

The Laniidae family of passerine birds includes shrikes, which are distinguished by their propensity to impale their flesh on
thorns after capturing insects, small birds, or animals. The shrikes are two genera with 34 species distributed throughout the world.
In North America, there is a member of the Shrike family called Loggerhead Shrikes. Loggerhead shrikes, also called butcherbirds
and migrating shrikes, reach a weight of roughly 48 grams [40—42]. Within the Laniidae family, this remarkable bird is rather
huge, and its large head may have contributed to its unique name. Males and females have similar appearances; it is difficult to
distinguish between them. They have black, white, and gray markings on their bodies and a black mask that covers their eyes
[43].

Over its range, the loggerhead's appearance varies slightly by region. Loggerheads eat mainly small vertebrates and small
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mammals. They live, migrate, eat in population, and use cooperative breeding [41]. Make nests on the trees; the female will
deposit between four and seven eggs in a clutch, which she will then incubate for roughly sixteen days [43]. For a period of
seventeen to twenty days, both parents are responsible for taking care of the nestlings. After leaving the

Nest AA

Figure 1 Shrike bird life cycle

nest, the young birds remain close to their parents for three weeks, during which time they get food from both parents, develop
their flight, and at night return to be warmed by the parents. For more information, return to reference [40]. The population of the
shrike bird life cycle is simulated in Figure(1). There are three nests: A, P, and Q are the population of birds’ nests; the nest AA
parent will brood eggs at the nest (AB); the nestling will grow up and become adults ready to fly and later depend on themselves,
the breeding and surviving of the birds of nest A shown from (A to C).

B. SHRIKE OPTIMIZATION ALGORITHM

Depending on the nesting and reproductive behavior of the shrike birds explained in the previous section, the shrikes live in a
population out of the urban area; the population has many nests, and each nest starts with two birds as parents. The breeding and
surviving behaviors of the shrikes were mimicked by Shrike Optimization (SHO) algorithm.

The SHO algorithms start by initializing parameters, where n is the size of nests, m is the number of eggs considered nestlings
surviving, and a is constant considered a natural factor affecting the bird. The search space of SHOA starts with a population of
n nests, where each nest starts with two parent birds generated randomly using the pseudo-code shown in the algorithm (2).
After the population is generated and nests are ready, seven nestlings will be generated by the pseudo-code generated nestling
shown in the algorithm (3). The nestlings will depend on their parents; the male parent is dominant, which feeds the female, and
for the nestlings to survive, it will feed by itself; and female also feeds by itself, feeding the nestling if they didn’t get food from
the male parent. In this algorithm, for every bird (parent, nestling), calculate amax using equation (1), and generate a random
number r. These parameters are used as natural outside factors in feeding.

x — LB if (x — LB) > (UB — x)

UB — x else (1)

Tmax = {

Where x is used as a solution, either parent or nestling, LB is the lower bound of the search space and UB is the upper bound,
Qmax 18 the maximize factor, and r simple random value in the range [0,1].

For all birds, if they are parents the Afood is generated by formula (2), which multiplies the current state by a random factor.
Afood; = bird; = r (2)

But for feeding nestlings and female birds, the Afood is generated by formula (3), which is the current bird state with a male parent
bringing food and using Oimax, I factors.

Afood; = r * (bird; — Mpgrent + @max) (3)

Whereas the nestlings didn’t survive by food from the male parent, then they tried to survive through the female parent using
formula (4), the same as formula (3), but cos (a) was used as a constant factor of nature.
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Afood; = r * (bird; — Fygrene + cos(a)) (4)

After generating food, the birds' next status will be calculated using formula (5), which is the current state of birds getting food.
bird,*** = bird;* + Afood; (5)

Calculate fitness for the birds, if better than the current, the current state will update with the new state, this is done because, in
reality, not all birds get food at the same time.

The SHO algorithm keeps the best of each nest as the local best, then the population keeps the best of all local best as global. The
idea of multi-modality is used here; there will be many local bests and one global best. Every three to five generations, the
algorithm will keep just two birds as parents and remove all other birds as they die or fly far away from nests as they get ready to
live independently. Every female parent starts laying eggs using formulas (6) and (7), getting food, and random r € [0,1] factor.

AfOOdj = (Fparent - Mpa'rent) + 7 (6)
egg] = Fparent + AfOOdj (7)

Generation after generation of searches are conducted using a randomly generated population. The best populations share
knowledge to produce the next generation, which is the most robust characteristic of biology-based algorithms used in the
proposed SHOA. Future generations will be able to come up with better solutions due to this reality. The flow chart also specifies
the process of the SHOA and the overall steps are presented in Appendix B Figures (6,7) as flowchart of SHOA.

lll. IMPLEMENTATION AND RESULTS

In this section, the proposed SHOA is benchmarked on the number of global optimization test functions to show the
performance of SHOA and the results compared with some recently developed optimization algorithms. Four groups of test
functions are selected as uni-modal, multi-modal, complex, and 100-digit Challenge test functions [44-49], each having a specific
characteristic. The test functions were shifted and rotated by the values shown in tables (1-3) to increase the complexity of the
problems, and to show the performance of the proposed algorithm. The results compared with MFO and Fitness Dependent
Optimizer (FDO) [29,50,51], which are the most recent and interesting algorithms because of their performance over other
algorithms. MFO are recently more interested algorithm, it has fast convergence but it has exploitation problems that occur with
complex and composite problems, the reason for the high exploration of the MFO algorithm [39].

Despite the increasing complexity of the tested functions by rotating and shifting, all uni-modal test functions have a single
optimum solution, while increasing the dimension will increase the problem difficulty and computation time to reach global
optimum solution. The test functions F1-F7 shown in Appendix Table 12 uni-modal function are considered in this study. The
multi-modal function has many local optima, which increases the difficulty of the algorithm to find an optimum solution because
of trapping in local optima. The test functions F8-13 in the Appendix Table 13 multi-modal test functions are considered multi-
modal problems for comparison, and the specification of functions, rotation, and shift values of the problems are specified in the
multi-modal table.

Composition functions are compounds of many functions with rotation, shifting, and add function bias. These functions are
important as case studies because the properties of multi-functions are mixed like real-world problems, and they will show the
performance of the algorithm in the exploration and exploitation search capability. The test functions F14-F19 mentioned in Table
14 composite functions had fii»=0 shown, where ¢ is used to coverage range control of each f(x), and A used for compress and
stretch the function, all these are tested with composite functions in the current study.

Recently, many competition functions have been provided by high-impact conferences to be used as comparison studies for
competing for the performance of optimization algorithms. The 100-Digit functions challenge has 10 hard-solved problems as
compound functions from the Society for Industrial and Applied Mathematics (SIAM), the purpose of solving such problem in
this paper is to find the optimum solution within a specific time because, in the original paper, there is no time limitation for solve
problems [49]. The problems are shown in Table 15 the Hundred-Digit Challenge basics with the range of x values, and
dimensions of the test problems.

Numerical examples with dimensions specified in the tables, each bunch mark run 30 times with SHOA. The SHOA runs with
a population size are 15, each nest starts with two shrikes as a parent of the nest, parents breeding 7 eggs, nestling birds feeding
by the parent by 4 generations of algorithm cycles, then best 2 keep for next generation, other birds removed from nest, 500
iterations specified for each turn the SHOA execution. The statical results Mean is the mean value over 30 turns, and Std is the
standard deviation summarized in Tables (1,2,3, and 4).

Table 1 Uni-modal Comparison Results
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SHOA MFO FDO

Mean STD Mean STD Mean STD
F1  5.03E-11 7.57E-11 1.17E-04 1.50E-04 747E-21 7.26E-19
F2  1.52E-05 1.67E-05  6.39E-04 8.77E-04 9.39E-06  6.91E-06
F3  2.23E-09 427E-09 6.97E+02  1.89E+02  8.55E-07 4.40E-06
F4  1.94E-07 1.45E-07  7.07E+01  5.28E+00  6.69E-04 2.49E-03
F5  3.16E-09 6.20E-09  1.39E+02  1.20E+02  2.35E+01  5.98E+01
F6  0.00E+00 0 1.13E-04 9.87E-05 1.42E-18 4.75E-18
F7  5.03E-1 7.57E-11  9.12E-02  4.64E-02 5.44E-01 3.15E-01

F

The proposed algorithm is designed for multi-modal, but uni-modal test functions are also benchmarked to show the
performance of SHOA, in the comparison F1, F2, and F7 are quite good compared with other algorithms, from F3-F6 the SHOA
outperforms other algorithms, the comparative results shown statistically the Table 1.

In Table 2 as a multi-modal comparative, SHOA shows superiority over another algorithm in all functions just F10, but in the
F10 the fitness is near to optimal by 10-8 is also a good performance. While comparing results with the composite functions
shown in Table 3, novel SHOA outperforms other powerful algorithms in all F15-F19, but in F14 it is quite good. In the all-test
function, SHOA performs a good solution outperforming many algorithms, even in F1, F2, F10, and F14 the function fitness is
<x10-5 which means too close to an optimal value.

Table 2 Multi-modal Comparison Results with Algorithms

F SHOA MFO FDO
Mean STD Mean STD Mean STD

F8 - 1.4E- - 72E+02 - 2.0E+05
3.1E+06 08 8.50E+03 2.29E+06

F9 2.88E- 3.2E- 8.46E+01 1.6E+01 1.46E+01 5.2E+00
08 08

F10 3.00E- 2.3E- 1.26E+00 7.3E-01 4.00E-15 6.3E-16
08 08

F11 4.27E- 1.8E- 1.91E-02 2.1E-02 5.69E-01 1.0E-01
10 09

F112 1.23E- 2.4E- 8.94E-01 8.8E-01 1.98E+01 2.6E+01
10 10

F13 4.63E- 5.2E- 1.16E-01 1.9E-01 1.03E+01 7.4E+00
11 11

Table 3 Composition Modal Comparison Results
F SHOA MFO FDO

Mean STD Mean STD Mean STD

F14  5.62E-14 1.1E-13  8.25E-31 1.0E-30 3.79E-07 6.3E-07
F15 9.53E-15 2.5E-14  6.67E+01  5.3E+01  1.50E-03 1.2E-03
F16 1.94E-12 2.8E-12  1.19E+02 2.8E+01  6.38E-03 1.0E-02
F17  1.18E-03 1.9E-03 3.45E+02 4.3E+01  2.38E+01  2.1E-01
F18 3.06E-04 3.1E-04 1.04E+01  3.7E+00  2.23E+02  9.9E-06
F19 9.29E-04 1.1E-03  7.07E+02  1.9E+02  2.28E+01  1.0E-02

Table 4100-Digit Challenge Problem Comparison Results

SHOA FDO AZOA

F Mean STD Mean STD Mean STD
cot 9.42E+02  3.6E+02  4.59E+03  2.0E+04  8.16E+04  1.5E+05
co 3.00E+00  1.3E-06  4.00E+00  3.2E-09 1.73E+01  3.4E-05
co3 3.35E+00  1.2E+00  1.37E+01  1.6E-11 1.27E+01  2.8E—06
Ccod 1.14E+02  1.4E+01  3.41E+01  1.6E+01  2.67E+02  1.9E+02
oS 6.17E-01 9.4E-02  2.14E+00  8.5E-02 1.42E+00  2.5E—01
o6 7.92E+00  9.1E-01 1.21E+01  6.0E-01 9.67E+00  1.1E+00
co7 1.64E+02  1.3E+01  1.20E+02  1.3E+01  2.45E+02  2.0E+02
co8 3.07E+00  1.7E-01 6.10E+00  7.5E-01 5.06E+00  6.1E-01
€9 2.51E+00  5.1E-01 2.00E+00 1.5E-10  3.32E+00  4.9E—01
C10

1.72E+00  8.8E-16 2.72E+00  8.8E-16 1.97E+01  2.6E+00

In Table 4 for Hundred-Digit challenge problems, it can be seen the SHOA outperforms other optimization algorithms in seven
CEC 2019 functions. Indeed, results in many test functions like (CE19-01, CE19-05, and CE19-06) show the novel SHOA is
more powerful than other algorithms not only at the average value of 30 runs but at other statistical Std values. Once again, the
signed rank test (as shown in Tables 5-6) demonstrated the superior performance of SHOA in solving all 29 test problem functions.
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Furthermore, Figure 2 optimal values generated display variation with an optimal value generated by algorithms, showing the
MFO reach 700, FDO > 200, while SHOA is close to zero with all 19 functions of 3 groups as uni-modal, multi-modal, and
Composite test functions.

Table 5 Ranking Value of Test Problem Function

SHOA MFO FDO
Rank Rank Rank

Functions

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F112
F13
F14
F15
F16
F17
F18
F19
total 49 41
total rank/ no. of fun 24/19 49/19 41/19
Ranking 1.26 2.58 2.16

3| D D[ [ [ [ | | = [P [P [ | BB [ [ B [ = | —

—[= = === = = o = [ = [t | = | = [ = [ = [t |0
W[ [w|w = [t [ro|ro|w|wfuw|—]uw|w|w|uw|uw]|w

8]

N~
N

Table 6 Comparison Assigned Ranking of CEC-19 Test Problems
SHOA  MFO  AZOA

function Rank Rank Rank
Co1 1 2 3
C02 1 2 3
Co03 1 3 2
C04 2 1 3
Co05 1 3 2
C06 1 2 3
Cco7 2 1 3
Co08 1 3 2
Co09 2 1 3
C10 1 3 2
Total 13 21 26
total rank/ no. of fun 13/10 21/10 26/10
Ranking 1.3 2.1 2.6
W sHoa W vro M FDO
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Figure 3 Percentage Contribution Area All functions
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In Figure 3 the contribution area clearly shows that SHOA occupies less percentage of the total area because it minimizes
problems, then a large area means less performance.
The 100-digit problems percent contribution area is shown in Figure 4 which the CE19 04 and CE19_07 take more
area than FDO while in all other cases, SHOA has less occupation area. The performance and trend line of some functions
are shown in Figure 5.

e & & @ ¥

ESHOA WFDO wAZOA

Figure 4 Percentage Contribution Area CE19 Functions
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Figure 5 Sample of Functions performance and trend line

IV. ENGINEERING PROBLEMS SOLVING

In this study, four constrained engineering problems, namely three-bar truss design, gear train design, antenna array design,
and frequency-modulated sound wave design, are considered to investigate the applicability of SHOA.

The problems have equality and inequality constraints, the SHOA should be equipped with the constrained solutions. Although,
in constraint problem solving there will be feasible and infeasible solutions, to investigate infeasible solutions, some algorithms
use penalty functions [52], in this study the

death penalty is used, and the infeasible solutions are discarded and not investigated with a penalty to speed up the algorithm
process. It is worth noting that the population size is set to 15, and iterations set to 500, for 30 turns for all the problems in this
section.

A. GEAR TRAIN DESIGN PROBLEM SOLVING
The gear train design is a mechanical engineering problem, the main objective is to minimize the desired ratio with the current
ratio [53], the objective function was formulated as follows:

_ (.1 GaGp)?
f (;)) - (6.931 GCGd) (8)
where ﬁ desired ratio, Ga, Gb, Ge, Gd teeth of gears A, B, C, and D respectively, with the ratio is:
Gear Ratio = 2% (9)
GcGg

subjectto: V{G;, 12 < G; < 60}, where G; is teeth of Ga, Gb, Gc, Gd.

6 VOLUME XX, 2024



Table 7 Comparative Result Gear train design problem

Algorithm  x1(Ga) x2(Gvb) x3 (Ge) x4(Gg)  Optimal Ratio
Error

SHOA 12 24 34.4 58.1 4.04E-15 0.1440

NL 18 22 45 60 5.70E-04 0.1466

CS 19 16 43 49 2.70E-12 0.1442

AZOA 60 17.52 12 24.29 0 3.606

MFO 43 19 16 49 2.70E-12 1.042

In Table 7 for SHOA with AZOA, MFO, Non-Linear (NL) [53], and Cuckoo Search (CS) [54] shown, the table presents
gear teeth of A, B, C, and D, optimal, and ratio (x) as comparison parameters, where the ratio must be closer to (1/6.931). In this
study, SHOA had high performance over other algorithms, first three algorithms shown in Table 8 had better performance than
the last two because their ratio rates as constraints were also satisfied when compared with the AZOA and MFO.

B. THREE-BAR TRUSS DESIGN PROBLEM SOLVING

The three-bar truss problem is a civil engineering design problem whose objective is to achieve the minimum weight
subjected to stress, deflection, and buckling constraints and evaluate the optimal cross-sectional area (A1, A2). Mathematically,
to minimize the weight of a three-bar truss construction, according to [55], an objective function and constraints are formulated
as follows:

Minimize f(x) = (2V2x; +x) X [ (10)
Subject to:

Cl(x)=%P—aS0 (11)
Cz(x)=mP—aS0 (12)
C3(x) = Tt P—-—0<0 (13)

Vi,0 < x; < 1,where i = 1,2, the constant parameters are: [ = 100cm, P =2KN/cm?, ¢ = 2KN/cm?.

The comparative result shown in Table 8 presents the performance of the SHOA compared with AZOA, CS, MFO, and
engineering design optimization by (Ray T, and Saini) TSa [55] algorithms, SHOA had tested nearly 20 times 30 rounds all
minimum fitness was between (263.90, 263.91) and maximum fitness was between (264.0, 264.6), and the (mean, std) of 30 round

is (264.026, 0.137), in the mentioned table shows the performance of SHOA either better or equals others with some x10-4 points.
Table 8 Comparative Result Three-bar Truss Design Problem

Algorithm x1 [A1] X2 [A2] Optimal weight
SHOA 0.7866268 0.4140837 263.9000
AZOA 0.7885471 0.408610 263.8958

TSa 0.795 0.395 264.3

MFO 0.7882447 0.4094669 263.8959

CS 0.788670 0.40902 263.9716

C. ANTENNA SPACED ARRAY PROBLEM SOLVING WITH SHOA

Optimization of antenna arrays means reducing the side-lobe level (SLL) of a non-uniformly spaced linear array. The fitness
value for the problem has been formulated to the maximum SLL to optimize the non-uniformly spaced array [50,56]. Objective
function and constraints are formulated as follows:

f (=) = max[20log |G(®)I] (14)
where the:
G (0) = Y cos[2mx; (cos 6 — cos ;)] + cos[2.25 X 2n(cos O — cos 6;)] (15)

n=4 andf = 45°, 6, = 90°

Subject to:
d = |xi — xj| > 0.251 (16)
0.1254 < min{x;} < 2.01 (17)

x €(0225),i =1234. i #j
To minimize SLL, the element should optimize without violation of above constraints above, where
0 is elevationangle,and 6, is beam angle, xi which is an element of antenna must be greater than 0.1254, the distance
between elements must be more than 0.25A.
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The comparative assessment in Table 9 shows an optimal value between both SHOA and FDO algorithms, the SHOA found
a minimum optimal out of 30 turns as shown in Table 9, and the maximum optimal value was (-169.995) with parameters (1.545,
0.203, 0.475, 1.254), the assessment shows the superiority of SHOA in all turns when compared with FDO.

Table 9 Comparative Result Antenna Spaced Array Problem

Algorithm Py P> Ps3 Py Optimal SLL
SHOA 1.345 1.346 1.346 1.346 -268.185
FDO 0.713 1.595 0.433 0.130 -120

D. FREQUENCY-MODULATED SOUND WAVE DESIGN PROBLEM SOLVING
The frequency modulation in sound waves required to find optimal parameters to transfer sounds, it has six
parameters to
optimize as (al, wl, a2, w2, a3, w3), which is a highly complex problem in the multimodal field, with fitness
function is a minimum summation of square error between evaluated and modeled data, the fitness and constraints are
formulated as follows:

(3) = ZWO® - y®) (18)

Where:

(;) = (al,w1,a2,w2,a3,w3) (19)

y(t) = a;.sin(w;.t.0 + a,.sin(w,.t.0 + as.sin(ws.t.0))) (20)

y(t) = (1.0).s5in((5.0).t.6 + (1.5).sin((4.8).t.60 + (2.0).sin((4.9).t.0))) (21)

With 8 = (2rm/100), the range of the parameter is [ —6.4, 6.35], and minimum fitness values are the optimal solution for the
sound wave problems to transfer sound with the lowest error rate [5S7-59].

Table 10 Comparative result of frequency-modulated sound wave

Alg. ai Wi a2 W2 a3 W3 Error avg.
SHOA 1.04 5.05 -1.36 481 1.90 -4.87 1.062 6.3
FDO 0.97 -0.24 -4.31 -0.01 -0.57 493 3.220 NA
fGA NA NA NA NA NA NA 0.0 8.4

In Table 10 comparative results of a frequency-modulated wave for the current study result with FDO and Fork Genetic
Algorithm (fGA) [57] are shown, the table presented six parameters, with the best fitness value out of 30 runs considered as an
optimal result, and an average of 30 runs of the SHOA with the mentioned algorithms FDO and fGA, the unknown data is written
as NA. The result shows that SHOA has a higher performance than both algorithms. The SHOA finds better fitness than FDO
and a better average than fGA out of 30 runs. The FDO average result was NA, an optimal value has been generated depending

on the presented parameters from FDO, and the fGA reached the optimal solution (—>) = 0.0, but the parameters had not been
p

presented.

V. CONCLUSIONS
In this study, the theoretical oft for the novel SHO swarm-based algorithm has been provided via concepts of exploration and
exploitation. It mimics the bird's breed adaptation and lifestyle in the population. The SHOA applied to 29 benchmark functions
(single-modal, multi-modal, composite, and 100-Digit Challenge) test functions, and engineering problems (constrained,
unconstrained) are solved. The performance has been compared with recent and powerful algorithms. The results demonstrated
the effectiveness of the newly developed approach SHOA in solving all test functions and a variety of engineering problems and
showed that this can provide reliable and accurate solutions in a variety of contexts. Through the SHOA study, the following were
concluded:
e  Faster convergence rate, the mechanism adapts the best birds for the next generation.
e  More stable than compared algorithms, the balance of convergence and divergence leads to the best solution.
e  Accurate search and high exploration and investigation promise a promising area of space within a reasonable amount of
time.
e High performance in solving constrained and un-constrained multimodal real optimization problems.
e Highly multi-modal problem optimizer, because each nest is considered a population with an optimal solution, and all are
considered a single population that finds the global optimum from local optimums.
The proposed SHOA is a single objective; for the future, many research works can be conducted in multi-objective, binary, and
discrete versions, all of which can be used to solve a variety of types of problems.
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Appendix A
Table 11 Uni-modal Test Functions with dimension = 10
Function Range Shift finin
n
Fl(x) = inz [-100, 100] [-30, -30, -30, ...] 0
=
F2(x) = z |x; | + 1_[ || [-10, 10] [-3,-3,-3,...] 0
i=1
n i
F3(x) = Z Zx]- [-100, 100] [-30, -30, -30, ..] 0
i=1 \j=1
F4(x) = max{|x;|,1 <i <n} [-100, 100] [-30, -30, -30, ...] 0
F5(x) = Z:[lOO(xiJr1 —x3)?%+ (x; — 1D?] [-30, 30] [-15,-15,-15,...] 0
.Tl
F6(x) = Z([xi +0.5])? [-100, 100] [-75,-75,-75, ...] 0
=
F7(x) = Z ix;* + rand[0,1] [-1.28,1.28] [-0.25,-0.25,-0.25, ...] 0
i=1

Table 12 Multi-modal Test Functions with dimension = 10

Function Range Shift min
- I
n g [300,- | &
. ~ (e}
F8(x) = Z—xl-z sin (‘/lxl-l) g 300, - ®
i=1 =) 300, ...] ©
n
FI(x) = z:[xi2 — cos(2mx;) + 10] [-5.12,5.12] FZZ’ 2 1o
i=1 >
n
F10(x) = —20exp | —0.2 |- Z —exp ( z cos(anl-)> +20+e [-32,32] 0
i=1 i=1
L . [-400, -
x; 400, -
F11(x) = —Zx?—ﬂcos(—‘)ﬂ -600, 600 ’ 0
2 400047 L Vi [ ] 400, ...]
i=1 i=1
- -
F12(x) = - {10 sin?(my;) +Z(yi —1)% [1+4 10 sin?(my;41)] + (v, — 1)2
I
+ Z u(x;,10,100,4)
i=1 [-30, -
[-50, 501 30,-30, | 0
(x+1) ]
yi=1+
k(x; —a)™ x;>a
u(x;, a, k,m) = 0—a< x;<a
k(—x; —a)™ x; < —a
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n-1

F13(x) = 0.1 [sinz(3nx1) + Z(xi — 1?1+ sin®@rx; + D] + (x, — 1) [1 + sin?(2mx,,)]

i=1

n
+ z u(x;,5,100,4)

i=1

k(xi - a)m X;>a
u(x;, a,k,m) = 0-a< x;<a
k(—x;—a)™ x;< —a

[-50, 50]

[-10, -
10,-10, | 0

Table 13 Composite Test Functions with dimension = 10, Range [-5,5], fnin=0

Functions

F14 (CF1)
f1,f2, ... ,f10 = sphere function
[61,82,85 ... 810l = [1,1,1,...,1]

) 1 _[ 5 5 5 ]
(A1, 42:-2 Aol = 705 700" 100

F15 (CF2)
f1,£2,.... ,f10 = Griewank's function
[81,82,85 ... 810l = [1,1,1,...,1]

) 1 _[ 5 5 5 ]
(A1, 42 o] = 965 750"~ Tog

F16 (CF3)
f1,£2,.... ,f10 = Griewank's function
[81,82,85 ... 810l = [1,1,1,...,1]
M2, 20] =1[11,.,1]

F17 (CF4)
f1,f2 = Ackley'sfunction
f3,f4 = Rastrigin's function
f5,f6 = Weierdtrass function
f7,f8 = Griewank's function
f9,f10 = Sphere function
[61,62,85 .. 810) = [1L1,1,...,1]

5 5 5 5 5 5 5 5
[A1, 22,0, 440] = 11 aE 100’100’ 100”100

F18 (CF4)

f1,f2 = Rastrigin's function
f3,f4 = Weierdtrass function
f5,f6 = Griewank's function
f7,f8 = Ackley'sfunction
f9,f10 = Sphere function
[61,82,85 ... 810l = [1,1,1,...,1]

11 5 5 5 5 5 5 5 5
[A1, 22,0, A0] = rRETTIETYIEL . TR

F18 (CF4)

f1,f2 = Rastrigin's function

f3,f4 = Weierdtrass function

f5,f6 = Griewank's function

f7,f8 = Ackley'sfunction

f9,f10 = Sphere function

[6,,8,,85 ... 810] = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9,1]

5 5 5
0.7X=—,08X5-,09 X—,1X—

32’

100

5
100

A, A A10] = 0.1 L 02><1 0.3 > 0.4 > 0.5 > 0.6 >
A dz o dio] = [01XE, 02X 2, 03xge ,04xae,  05x3q5, 06X 4, 32
Table 14 Summary of basic “The Hundred-Digit Challenge” Benchmarks
Name Functions g‘ Range
STRONG CHEBYSHEV
€01 | POLYNOMIAL FITTING PROBLEM | ° | [81928192]
oz INVERSE HILBERT MATRIX 16 [-16384,
PROBLEM 16384]
LENNARD-JONES MINIMUM
€03 ENERGY CLUSTER 18| [44]
C04 RASTRIGIN’S FUNCTION 10 | [-100, 100]
Co05 GRIEWANGK’S FUNCTION 10 [-100, 100]
C06 WEIERSTRASS FUNCTION 10 | [-100, 100]
MODIFIED SCHWEFEL’S
Co FUNCTION 10 | [-100, 100]
EXPANDED SCHAFFER'’S F6
Co08 FUNCTION 10 | [-100, 100]
C09 HAPPY CAT FUNCTION 10 | [-100, 100]
C10 ACKLEY FUNCTION 10 | [-100, 100]
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APPENDIX B

Generate population of nesti and calculate fitness

No
Increment cycle

yes
& Population has Nest For each nestiin the population Every 3"5
generation
v (cycle)
Increment i I l ———
no
< Nestihas bird Forleath burcl! in nesti
Calculate Gma using equation (1) and generate r
Calculate Afood using formula (2) bird; == Mparert
Calculate Afood using formula (3)
L] Calculate bird; using formula (5)
yes
Calculate Afood using formula (2) *
Calculate fitness; ]

Calculate Afood using formula (4) bird; == Fouert

,, !

p{ Calculate bird; using formula (5)

v

| Calculate fitness;

I ' g Keep bird; for next generation

h 4

Keep local best for all nests

Y

Increment |

e bird, {t+1) fitness < bird) (t) fitness

Keep Global best from all local bests

Keep local best of nesti e

l £

Figure 6 Flow chart of SHOA
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1 nest;

For each eg

Calculate Omax using equation (1) and

generater

Keep best 2 and remove others

Calculate Aegg using formula(3) e FParent = MParent

Figure 7 Flow chart of Generate Egg
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