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Abstract—We propose an approach for constraining the set
of nonlinear coefficients of the conventional first-order regular
perturbation (FRP) model of the Manakov Equation. We identify
the largest contributions in the FRP model and provide geo-
metrical insights into the distribution of their magnitudes in a
three-dimensional space. As a result, a multi-plane hyperbolic
constraint is introduced. A closed-form upper bound on the
constrained set of nonlinear coefficients is given. We also report
on the performance characterization of the FRP with multi-
plane hyperbolic constraint and show that it reduces the overall
complexity with minimal penalties in accuracy. For a 120 km
standard single-mode fiber transmission, at 60 Gbaud with DP-
16QAM, a complexity reduction of 93% is achieved with a
performance penalty below 0.1 dB.

Index Terms—Channel modeling, perturbation-based models,
fiber nonlinearities.

I. INTRODUCTION

FFECTIVE channel models are fundamental in the design
Eand performance assessment of fibre-optic transmission
systems [1]. In coherent systems utilizing dual polarisation
signals, most analytical models are underpinned by the Man-
akov equation (ME) [2]. Since the ME does not have a closed-
form solution, it is conventionally approximated using diverse
techniques [1, Ch. 9]. A widely-used method, particularly for
systems operating in the linear and pseudo-linear regimes, is
the first-order regular perturbation (FRP) [3]. While the FRP
method provides a reliable and accurate approximation to the
ME, it requires the computation of nonlinear perturbation coef-
ficients, also called kernels. This computation is cumbersome
for transmission scenarios involving long distances or large
signal bandwidths, for which a large number of kernels is
required [1f], [4]-[6].

In the context of the design of nonlinearity compensa-
tion/mitigation algorithms, several works in the literature have
targeted a reduction of the FRP computational complexity.
In [[7], [8]l, the authors designed the pulse shape to simplify
the computation of kernels. Other approaches, e.g., [9]], [10],
reduce the number of kernels by considering the temporal
phase-matching symmetry. This avoids computing coefficients
with zero contribution due to the isotropic phase distribution of
the transmitted symbols [11, Sec. VIII]. The authors in [12]-
[14] propose quantizing the kernels to substantially reduce the
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number of kernels used to compute the FRP model. More
recently, a growing number of data-driven approaches have
emerged to optimize the FRP coefficients [[15]—[|19]]. However,
to the best of our knowledge, very little to no attention has
been given to the selection of subsets based on the geometric
properties of the magnitudes of the kernels.

In this paper, we present a novel approach to constrain the
set of FRP kernels based on the geometric characteristics of the
spatial distribution of their magnitudes. Unlike [9]], [[13]], [20],
[21]], our approach does not require precomputation of large
sets of kernels nor magnitude-based pruning. Our method in-
troduces a systematic way to select subsets of large kernels that
lead us to the definition of a multi-plane hyperbolic constraint.
We show that using the multi-plane hyperbolic constraint we
can significantly reduce the computational complexity, without
sacrificing the model’s accuracy.

This paper is organized as follows. In Sec. [llf we introduce
the transmission system model and brief key aspects of the
time-domain FRP, followed by an identification of the ge-
ometric characteristics of the magnitudes of the kernels. In
Sec. [l we formalize the multi-plane hyperbolic constraint
and report an upper bound for the cardinality of the subset of
kernels after the multi-plane hyperbolic constraint is applied.
In Sec. [[V] we evaluate the performance of this constraint for
a 120 km standard single-mode fiber transmission, operating
at 60 Gbaud with DP-16QAM, and Sec. is devoted to
conclusions.

II. PRELIMINARIES
A. System Model and Characteristics of FRP

In this work, we consider a single-channel, single-span fiber-
optic transmission system using a polarisation-multiplexed sig-
nal, as shown in Fig.[T} The transmitter generates a sequence of
two-dimensional complex symbols with unit energy per com-
plex dimensiona = ...,a,_1,@y, Qp+1,- .., With n denoting
a discrete time instanceﬂ This sequence is linearly modulated
(MOD) and energy-scaled by E, to generate the transmitted
signal Q(t,0). Es = P/2R, is the average energy per
transmitted symbol, where P is the launch power, Ry = 1/T is
the symbol rate, and T the is the symbol duration. This signal
is then propagated through a length-L (baseband equivalent)

I Notation convention: Bold letters denote two-dimensional complex sym-
bols, underlined bold letters denote sequences of symbols, and sets are denoted
by calligraphic letters. (¢1,t2,. .., tn) denote n-tuples and if not stated, the
vector © = [x1,T2,...,2n]" of dimension n is a column vector. (-)T
denotes transposition, (-)T denotes Hermitian transposition, and | - | denotes
absolute value when the argument is a scalar and cardinality when it is a set.
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Fig. 1. System model under consideration in this work. The transmitter uses
linear modulation (MOD). The receiver applies ideal chromatic dispersion
compensation (CDC), matched filtering (MF), and sampling. The coefficient
VEs tunes the launch power P. The optical channel considers a fiber of
length L, modeled by ME.

optical channel modeled by the attenuation-normalized ME
eq. (3.1.3)]. At the receiver side, ideal chromatic dispersion
compensation is performed, followed by a matched filter and
sampling at the symbol rate, yielding a sequence of received
2D complex symbols © = ..., 7Tp_1,7n, Trnt1,---

For small enough values of the input signal power, FRP
approximates the ME yielding the following input-output
relation at time instant 0 [22 Egs. (5) and (6)]

Z (aLal> am Skim- (1)

(k,l,m)€Z3

8
Yo X ap + J§7E5

In (]I[), 7 is the imaginary unit,  is the fiber nonlinear
coefficient, and Z is the set of integers. The kernels Sy,
in (I) are complex-valued coefficients modeling self-phase
modulation and are defined as eq. (4)]

L [eS)
Sum 2 [ et [ e - k)
0 —o0
h(z,t = IT)h(z,t —mT) dtdz, (2)

where with a slight abuse of notation, h(z,t) is used to denote
the solution of the ME when v = 0 and Q(¢,0) = h(t).

B. Finite-memory FRP

The mathematical expression in (I) implies that an infinite
number of kernels must be numerically computed. In practice,
however, pulses are always time-limited, and thus, the triple
summation is typically truncated. A typical way to do so is

8
Yo R ag + J-vE;s

9 Z (a£a1> am Sklma (3)

(k,I,m)emM

where
MEL{(km)eZ3: —M < k,l,m <M} (4

The mathematical form of the FRP model after the trunca-
tion specified in (3)-(@) yields a finite-memory FRP model.
Accordingly, M in @) can be understood as the model’s
memory length, as (2M + 1) symbols around ag are needed
to compute the model’s output (3). Henceforth, we refer to
finite-memory FRP in (B)-@) as simply FRP. Although this
truncation to the domain of FRP is the common approach
to tackle the task of computing infinite kernels in (I), the
computation of M in @) remains challenging for large M,
given that |[M| = (2M + 1)3.

2
TABLE I
FIBER AND PULSE SHAPE PARAMETERS
Nonlinear parameter y 1.2W-lkm—?!
Fiber attenuation o 0.2 dB/km
Group velocity dispersion G2 —21.7 ps?/km
Fiber length L 120 km
Symbol rate Rg 60 Gbaud
Pulse shape h(t) Root-raised-cosine (RRC)
RRC roll-off factor 0.01
0
—-20
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Fig. 2. Heatmap of 10log {|Skim|/|Sooo|} for the plane k — 1 —m = 0
when —15 < [,m < 15. The hyperbolic star defined by [l - m| = 15 is
shown with dashed red lines.

C. Geometric Characteristics of the Kernels

Let’s consider the collection of magnitudes of the kernels,
for which |Spgo| is the largest magnitude. To depict the spatial
distribution of the magnitudes of the kernels in a three-
dimensional space, we map |Sgm| to the (k,I,m) coordinate
in Z3. |Spoo| is then located in the origin of the coordinate
system. From this point forward, the geometric characteristics
of the kernels are analyzed by taking this depiction for the
subset M as a frame of reference.

The first aspect to highlight from the spatial distribution
of the magnitudes of the kernels is that the kernels with
large magnitude exhibit a hyperbolic decay relative to |Spgo|-
As previously reported in [9]I, [[I3], [18]], [24], the plane
k — 1 —m = 0 contains the largest kernels within M. This
is an argument frequently utilized to reduce complexity in
perturbation-based methods for nonlinearity compensation. To
highlight the characteristics of the plane £ — 1 — m = 0, we
display in Fig. [2[ a heatmap of 101og {|Skim|/|So0o|} dB for
the system parameters specified in Table [l The heatmaps are
shown for —15 < [,m < 15.

Fig. [2] shows that the largest kernels in the plane k—{—m =
0 fall within a hyperbolic star domain. This observation con-
firms the results in [9} Fig. 5], Fig. 3] and Fig. 6]. In
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Fig. 3. Heatmap of 101log {|Skim|/[Sooo|} for the planes k — ! —m = j when —15 < [,m < 15for(a) j =1, (b) j = —1,(c) j = —2, and (d) j = 2.
The hyperbolic stars given by |(I — ) - (m — %)| < 15 are drawn in green continuous lines, while the hyperbolic star |l - m| < 15 is highlighted in red.

The center of the star (0,0) is emphasized with a black circle.

Figure 2] we highlight the hyperbolic star domain containing a
subset of magnitudes above —40 dB. The analytical expression
for this hyperbolic star is |l - m| = M. The plot of this
expression is depicted by dashed red curves in the same figure,
with its center located at (0,0), which is emphasized by a
black circle.

The second important aspect is that large kernels in the 3D
depiction align along parallel diagonal planes characterized
by the normal vector [1,—1,—1]T. These planes, which we
call principal planes, can be expressed mathematically as
[1,—1,—1] - [k,I,m]T = j, with j € Z. To illustrate the key
geometric characteristics of these principal planes for j # 0,
we present the heatmaps of 10log {|Skim|/|Sooo|} dB for
Jj=—2,-1,1,2 in Fig. §] (a)-(d).

For all the cases displayed in Fig. [3] there is a reduction

of the magnitudes of the kernels with respect to j = 0 for
increasing j. Note that the initial value of the scale bar changes
from 0 dB for j = 0 in Fig. 2] to —20 dB and —30 dB for
j=—1,1and j = —2,2 in Fig. 3] respectively. Additionally,
the largest magnitudes in the principal planes for j # 0 also
fall within hyperbolic star domains, for which the centers
are highlighted by white circles. As shown in Fig. [3] the
white circles are displaced and the hyperbolas are no longer
centered at the origin (black circle). Also, notice that pairs j
and —7 are equal in magnitude but their centers are shifted
in opposite directions. The general mathematical expression
for the hyperbolic star for any principal plane j is given by
|(I — %) < (m— %)| = M. After drawing these hyperbolas in
green for M =M, Fig. ]3| (a)-(d) shows that large magnitudes
are within the boundaries set by |(I — %) - (m — Z)| = M. In
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the following section, the properties identified in Sec. are
used to define geometric-based constraints on M.

III. MULTI-PLANE HYPERBOLIC CONSTRAINT FRP

In this section, following the results in Sec. [[I-C| we propose
a geometry-based constraint over M in that we call
multi-plane hyperbolic constraint. This constraint effectively
decreases the complexity of the FRP model with negligible
accuracy.

The analysis in Sec. (see Fig. shows that the
principal plane j = 0 is the one containing a large fraction of
the most significant kernels and that they are located within
a hyperbolic star centered in the origin. Furthermore, the
analysis shows that principal planes with j # 0 also contain
significant contributions and that the largest are located inside
shifted hyperbolic stars (see Fig.[3). These observations lead us
to define the subset H;(M) C M, where i € Z* will indicate
that 27 4+ 1 principal planes are included, and M determines
the size of the hyperbolic star, as follows

Hi(M) & {(k,l,m)eM:k—1-m=j A
(1—=34/2)- (m—j/2)| < M, 5)
JEL A j=—i,—i+1,..,i}.

Taking M = M? in (®) removes the hyperbolic constraint
and taking ¢ = O collapses the set to a single principal plane.
Observe that the set Ho(M?) is the case used by the authors of
[13]], [18]]. Other authors have considered a variant of ’HO(M ),
for which M is selected such that kernels with magnitudes
below a user-defined threshold are pruned [9], [20]. Both
cases, Ho(M?) and HO(M ) with magnitude threshold, have
been extensively explored as a strategy to filter out negligible
contributions to the FRP model.

Considering ¢ = 0 in () and changing the value of M,
allows us to capture the kernels within one hyperbolic star.
When () is used with nonzero values of 4, other principal
planes are included (see Fig. [2), while also constraining them
via shifted hyperbolic stars. Our proposal in (5) considers for
the first time principal planes additional to j = 0 but also
introduces a second tunable parameter (M). Together, ¢ and
M, set the cardinality of the set 7;()M), and adjusting them
directly impacts the performance of FRP, as we will see in the
next section.

The cardinality of #;(M) measures the complexity of the
channel model in (3) when the summation is constrained to
H,;(M) instead of M. By definition, when i = 2M and M =
M2, |Hzpn (M?)] = |[M| = (2M + 1)3, since that is the case
where the hyperbolic constraint degenerates in the entire plane
and that the same time includes all the principal planes that
M can accommodate. The most interesting cases are when
i is small and M = M. The assumption on M = M will
become clear in the next section.

The following proposition provides an upper bound on the
number of elements of the proposed set in (3).

Proposition 1. The cardinality of H;(M) is upper bounded
as

M
|H:(M)| < (26 + 1) (42 V;J +4(M —1) + 1) (6)
k=1

Proof: Computing |Ho(M)| requires: (i) solving a dis-
crete integral to count all the elements under half a hyperbola
excluding the asymptote ¥ = 0, and (ii) summing all the
elements lying on £k =0 and [ = 0.

The result for (i) is

M M
Ci=>Y “J : (7)
and (ii) is
Cy = 4M + 1. (8)

Adding up (7)) and (8) and subtracting the contributions (I, m)
in the hyperbolic stars outside of the plane k — 1l — m = 0,
results in [Ho(M)| = 4Cy + Cy — 4. This result accounts for
a full star. Multiplying the number of elements in a full star
by the number of principal planes considered, i.e., (2i + 1)
when ¢ # 0, sets an upper bound on |H;(M)|. This result
is an upper bound because the neighboring planes to i = 0
do not contain full but cut stars. See for an example Fig. 3]
(a). The hyperbolic stars are cut by the boundary conditions
k—l—m=jand —M < k,I,m < M. [ |

An important advantage of geometrically constraining the
set of FRP kernels is that it does not require precomputation
of large sets of kernels nor magnitude-based pruning. Tradi-
tionally, most approaches in the literature first compute a set of
kernels with large cardinality and then perform a magnitude-
based pruning on it. On the other hand, our approach points at
the indices (k, [, m) needed to compute the FRP model in the
definition of 7£;(M). Only those kernels are to be calculated
using the integral from (2). This contributes to significantly
reducing the overall complexity of the computation of the
kernels, as well as the model as we will see in the next section.
It is important to note that the reduction in the cardinality of
the set is relative to M for a fixed M.

In the following section, we present an assessment of the
performance and complexity of the multi-plane hyperbolic
approach defined in (3). We establish a comparison with the
benchmark set by FRP as specified in (3)—(d).

IV. NUMERICAL RESULTS

Similar to [21]], we introduce the nonlinear signal-to-noise
ratio (NSNR) as a performance metric. NSNR is computed as

P E[A]]
P E[lY — A]2)

where P is the transmit power and Pyr; is the nonlinear
interference power, A and Y are the random variables with
samples ag and y,, respectively, and E[-] denotes the expecta-
tion operator. In this work, the performance of FRP is assessed
using the gap to the split-step Fourier method (SSFM). For
simplicity, the NSNR gap to SSFM is henceforth denoted as
A.

NSNR £

€))
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A [dB]

Fig. 4. A against M for the set M in {@). P = 7 dBm is the optimum launch
power for L = 120 km standard single-mode fiber transmission, operating
at 60 Gbaud using DP-16QAM when amplified spontaneous emission (ASE)
noise is not taken into account, and a 5 dB noise figure is assumed.

The results of A presented in this section are for the system
with parameters specified in Table [ The kernels used to
compute the FRP model, constrained by either M in (@) or

H;(M) in (5), are numerically evaluated using (Z). Fig. E|

shows A as a function of M for P = 4,7 and 10 dBm
for the set M. The reference value P = 7 dBm is the
optimum launch power when amplified spontaneous emission
(ASE) noise is not taken into account. In such a case, a 5 dB
noise figure is assumed. As shown in [25| Fig. 2] for powers
above P = 10 dBm, the curves for FRP and SSFM begin to
diverge. Fig. ] shows that for M > 3, the NSNR prediction
of FRP matches SSFM within a 0.5 dB gap for all cases. For
increasing M, all A curves show saturation preceded by a
small deflection. Henceforth, M with M = 15 is taken as the
reference to be constrained to determine the set Hi(]\;[ ). The
size M = 15 guarantees gaps < 0.5 dB for all powers up to
10 dBm. See the inset of Fig. 4]

Fig. |5| shows the cardinality of #£;(M) as a function of
M for i = 0,1,...,5. The threshold |[M| = (2M + 1)3
is indicated as a reference. As expected, all cases (i, M)
satisfy |H;(M)| < |M|. Fig. [3| also shows that (M) and
H5 (M) yield reductions in the cardinality of 99% and 92%,
respectively, while Hq(M?) and Hs(M?) yield 98% and 74%.
In Fig. [ we indicate with red-filled black squares the upper
bound on |H;(M)]| using (6) in Proposition [1} Observe in the

inset of Fig. 5] that for ¢ > 0, the bound in (@) is not tight.
In Fig.[6](a) we display the result of A against launch power
considering the sets H;(M) and H;(M?) for i = 0,2,5.
Fig. [0] (a) shows that ¢ = 0 is, as expected, the worst-
performing case. Increasing ¢ yields improvement for all
powers considered. Notice that the differences between the
{M, M?} pairs are relatively small (< 0.2 dB for all 7).
This suggests that kernels outside the hyperbolic star domain
of size M = M, have minimal contributions to (@). This
justifies why in Proposition M = M is chosen, a case

10

|H;(M)| for M = 15

B '
¢ B —e—i=0| ' |
I — i=1| |
s —— i =2 ]

- * —e—1i=3|

5 B i =4 1
10 1=5 [
Pro. 1 [
L a 1]
—r V]

| 15 | | !

0 15 50 100 150 200 225

M

Fig. 5. Cardinality of H;(M) as a function of M for i = [0, 5]. The definition
of Hi(M ) generates a reduction in the cardinality w.r.t. M. This reduction
is indicated for i = 0 and i = 5 with A/ = M and M = M?. For M = 15,
the upper bound in Proposition |I| is highlighted with black squares filled with
red.

that according to the result shown in Fig. 5] yields a major
reduction in the cardinality of the set. Fig. [f] (a) also shows
that for M = M? larger values of A are observed among
different powers compared to M = M. This can be justified
by the fact that removing kernels from the reference set M
induces a displacement of the performance in A towards the
deflection observed in Fig. [d Once in the deflected region, it
is possible to fall into scenarios where the set with M? yields
a slightly larger gap than M due to the concavity of the region.
Although in Fig. [f] (a) ¢ = 5 is the best case we considered,
the small gap between ¢ = 5 and ¢ = 2 suggests that adding
principal planes beyond 7 = 5 might not lead to major gains.

Fig. |§| (b) shows A against M for P =7 dBm, where it is
observed that all #;(M) saturate over the set M. Similar to
Fig. [f] (a), Fig. [f] (b) shows that increasing ¢ moves the sat-
uration level towards zero, supporting the already highlighted
advantage of adding principal planes to ’HO(M ). The same
figure also shows that for all ¢ > 1, A is within 0.5 dB to
M. Comparing this result to Ho(M) shows that our proposal
outperforms the conventional approach found in the literature,
i.e., a single plane. Inspecting Fig. |§| (b) for M > M reveals a
small decrease in performance: the gap to M opens up as M
exceeds M. Such a trend confirms that considering M larger
than M does not necessarily guarantee a better performance.
In addition, we observe in the M > M region that increasing ¢
does close the gap to M, while in the M< M region it does
not. This behavior indicates that for M = 15 a set H;(M)
with M < M will not match the performance of another set
with M > M by simply increasing 7. For the case M=M
it is possible to improve performance by increasing ¢ and it
does not have the inconclusiveness previously mentioned for
the M < M region. This is an additional characteristic of
the case M = M that motivated us to choose it as a case of
interest (see Proposition [)).

Finally, the inset in Fig. |§| (b), shows that H4(M) is the
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Fig. 6. (a) A vs launch power for the sets Ho(M), Ha(M) and Hs (M) for M = M and M = M2. (b) A vs M for the set #;(M) at P =7 dBm for
i =1[0,5]. In (b) Ha(M) offers a 93% decrease in complexity with a penalty to the model’s accuracy below 0.1 dB,

scenario that yields the closest performance to M. Besides
having minimal penalties to the model’s accuracy (0.07 dB),
H4(M) offers a 93% decrease in complexity. Therefore, for
the system model under consideration and P = 7 dBm, 9
principal planes containing a hyperbolic star of size M, are
sufficient to guarantee an equivalent performance to M with
low complexity. Given that Fig. [6] (a) shows a comparable
behavior for all the powers considered, we conjecture that
the good properties of H4(M) extend over other powers with
minor penalties in performance.

V. CONCLUSIONS

We introduced a geometric constraint to the set of ker-
nels in the first-order perturbative solution to the Manakov
equation. The most relevant kernels can be identified via
a multi-plane hyperbolic restriction for a given maximum
number of kernels. Using the kernels within this set leads to
significant reductions in complexity with minimal performance
penalties. Future work includes developing perturbation-based
nonlinearity compensation/mitigation algorithms considering
multi-plane hyperbolic constraints. Furthermore, due to the
equivalence between the FRP coefficients and the Volterra
kernels, our proposal also has the potential to be applied in
the design of low-complexity Volterra equalizers.
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