DreamArrangement: Learning Language-conditioned

Robotic Rearrangement of Objects via Denoising
Diffusion and VLM Planner

Wenkai Chen*, Student Member, IEEE, Changming Xiao*, Student Member, IEEE, Ge Gao,
Fuchun Sun, Fellow, IEEE, Changshui Zhang, Fellow, IEEE, and Jianwei Zhang, Senior Member, IEEE

Abstract—The capability for robotic systems to rearrange
objects based on human instructions represents a critical step
towards realizing embodied intelligence. Recently, diffusion-
based learning has shown significant advancements in the field
of data generation while prompt-based learning has proven
effective in formulating robot manipulation strategies. However,
prior solutions for robotic rearrangement have overlooked the
significance of integrating human preferences and optimizing
for rearrangement efficiency. Additionally, traditional prompt-
based approaches struggle with complex, semantically meaning-
ful rearrangement tasks without pre-defined target states for
objects. To address these challenges, our work first introduces
a comprehensive 2D tabletop rearrangement dataset, utilizing
a physical simulator to capture inter-object relationships and
semantic configurations. Then we present DreamArrangement, a
novel language-conditioned object rearrangement scheme, con-
sisting of two primary processes: employing a transformer-
based multi-modal denoising diffusion model to envisage the
desired arrangement of objects, and leveraging a vision-language
foundational model to derive actionable policies from text,
alongside initial and target visual information. In particular, we
introduce an efficiency-oriented learning strategy to minimize the
average motion distance of objects. Given few-shot instruction
examples, the learned policy from our synthetic dataset can be
transferred to the real world without extra human intervention.
Extensive simulations validate DreamArrangement’s superior re-
arrangement quality and efficiency. Moreover, real-world robotic
experiments confirm that our method can adeptly execute a
range of challenging, language-conditioned, and long-horizon
tasks with a singular model. The demonstration video can be
found at https://youtu.be/fq25-DjrbQE,

Index Terms—Robotic rearrangement, Denoising diffusion,
Prompt-based learning, Vision-language model.

I. INTRODUCTION

ROM the perspective of embodied intelligence, how can
we empower the household robots with the capability to
discern how and where they should rearrange messy tabletop
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objects especially involving ambiguous human instructions?
Comprehensive reasoning and planning across diverse con-
straints from object geometry, language-conditioned tasks,
collision physics, and human preference, pose a significant
challenge for autonomous robots operating within varied and
unstructured household scenarios, such as automated packag-
ing and sorting in warehouses, kitchen cleaning, and complex
assembly tasks in manufacturing. In this work, we study this
challenge by introducing human-like imagination and planning
ability to the robots in the context of human instructions and
prior observations.

Robotic rearrangement can be defined as a canonical task:
given a previously unseen environment, the robot needs to re-
arrange each object into an appropriate pose to form a specified
structure following human preference. This paradigm can also
encompass a diverse array of activities, such as making a bed,
ironing clothes, and cleaning a room. However, we specifically
concentrate on investigating tabletop object arrangements,
considering this challenging but tractable [[1]. Recently, some
approaches that leverage large language models (LLMs) have
demonstrated a strong generalization for robots to understand
complex semantic contexts and generate long-horizon planning
for tabletop arrangement task [2]—[4]]. However, the goal states
of different objects still need to be manually specified in the
prompt instructions. Furthermore, to estimate the target states
of objects intelligently, some generative work based on VAE
[S] and diffusion models [6]], [7] has been proposed to endow
the robot with human-like imagination, hopefully generating
and refining the distribution of object poses. For instance, [6]]
proposes to utilize DALL-E, a web-scale artificial intelligence-
generated content (AIGC) model, to generate a target image
that implicitly incorporates various objects the robot observes.
Nevertheless, the exclusive reliance on textual input for image
generation has proven to be notably unstable and inefficient
in real-world robot manipulation, primarily due to the neglect
of crucial observational cues. Inspired by this prior work,
building a model that conducts observation reasoning first and
then imagines goal states intuitively via language is a crucial
step towards autonomous robotic rearrangement.

On the other hand, considering functional and stylistic
inter-object relationships emerges as a critical dimension for
real-world robotic rearrangement [8]]. For a given “messy”
scenario, a ‘“clean” arrangement should not be deterministic
because there exists a plurality of desirable layouts from
different human preferences. Thus, beyond the initial phase
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Rearrange the objects into
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the container is a plate. | will imagine a proper target layout.

Dreaming Process

e Generated Policy:

objs, masks, target_masks= GetObsVLM(input, prompt)

app_pos = Pix2Pos(masks, obj="apple")
target_app_pos = Pix2Pos(target_masks, obj="apple")
action = PickAndPlace(pick=app_pos, place=target_app_pos)

| ~

VLM planner ——»
L~ O 00
==

& b

GPT-4

Robot Rearrangement

Fig. 1. Overview of the proposed scheme on the robotic rearrangement task when the multi-object structure setting is containing.

of estimating the goal poses of objects, the subsequent phase
involves reorganizing the global layout of rearranged objects
to align with human preferences, often communicated through
language instructions. Moreover, to improve the real-world
rearrangement efficiency, we also need to reduce the duration
cost of the long-horizon manipulation by considering the
motion distance of each object as much as possible. De-
spite notable advancements in learning-based scene synthesis
and robotic rearrangement methods [[7]—{10], there remains
a challenge to meet diverse desiderata in real human-robot
cooperation environments.

In this paper, we design a novel robotic arrangement scheme
to solve the aforementioned flaws and maximize versatility and
adaptivity, where the robot can rearrange objects in different
goal poses and structures via language instructions without
extra manual intervention. Specifically, we first construct a
kitchen-based tabletop arrangement dataset consisting of four
different global structures - horizontal, vertical, circle, and
containing, and two local regularities - symmetry and uniform,
where 22-class objects with different shape scales and texture
materials are selected. Given that the input is a messy scene
with human language instructions, we propose a transformer-
based multi-modal denoising diffusion framework to estimate
the goal states of objects by implicitly reasoning multi-object
semantic relations.

Furthermore, we treat the planning problem of robotic
rearrangement as a long-horizon estimation task by utiliz-
ing a frozen vision-language model (VLM) like GPT-4 to
bridge connections between language text, visual perception,
and robotic action. When prompted with several examples
followed by the corresponding rearrangement policy, VLM
planners can take in new language instructions and semantic
contexts from initial “messy” scenes and predicted “clean”
scenes, autonomously generating a new robotic arrangement
policy. An example of the whole human-robot arrangement
process of the containing structure can be visualized in Fig. [T}
It describes a task scene in which a household robot needs
to place all objects on the table into a container like a
plate or box without causing objects collision and penetration.
Finally, the proposed scheme is evaluated in both simulation
and real robot experiments and compared with several state-
of-the-art baselines, demonstrating that it can achieve better
rearrangement quality and efficiency for different structure-

based rearrangement tasks. The contributions of this paper are
described as follows:

1) Considering the differentiated requirements of inter-
object relationships and human preference in the robotic
rearrangement task, we construct a 2D kitchen rearrangement
dataset consisting of a variety of household object scenes with
different global structures and local regularities.

2) To generate a high-quality rearranged scene, we propose
a transformer-based multi-modal denoising diffusion model,
which can effectively reason semantic and geometric relations
from diverse objects, and explicitly predict the goal states of
objects instructed by contextualized language representation.

3) To obtain the optimal layout in the real world, we propose
an efficiency-oriented rearrangement learning strategy, which
pursues a minimal average motion distance of objects.

4) Inspired by prompt-based learning, we integrate the
generative model with VLMs to formulate a VLM planner,
which outputs robot action policies in different arrangement
tasks and can be directly deployed into a physical robot.

This paper is organized in the following manner: Sec. [[I]
provides a review of literature relevant to our study. The
problem we aim to address is detailed in Sec. [T} Secs. [V]
and [V] discuss our approach and the experimental validation,
respectively. The paper is concluded in Section [V

II. RELATED WORKS
A. Language-based Robotic Manipulation

Language is a flexible and instinctive medium, enabling hu-
mans to specify tasks, communicate contextual details, and ex-
press their intentions. Much work about language-conditioned
robot manipulations has been proposed to control a robot
by generating low-level policies via reinforcement learning
(RL) or imitation learning (IL) [TT]]-[14]. proposes using
language as abstract representations of hierarchical RL frame-
work, demonstrating that the agent can learn compositional
tasks like object sorting and multi-object arrangement in a
simulation environment. Furthermore, designs a novel
RL agent that directly maps language instructions and raw
visual input to generate a sequence of actions without requiring
intermediate representations and planning procedures. How-
ever, language-conditioned RL methods are difficult to deploy
into real physical robots due to the challenge of learning the



relationship between language and multimodal sensor data
in the unstructured robot environment. To further improve
learning efficiency, other researchers adopt the language-
conditioned IL approaches, where agents are trained to per-
form tasks by mimicking the actions demonstrated by a human
expert. Focusing on the containing task, [17] first proposes a
language-conditioned visuomotor policy utilizing unstructured
and unlabeled data collected from a teleoperated robot in a
physics simulator. [|18] further integrates the low-level motion
controller into the language-conditioned learning framework.
Both test results indicate that the robot can hopefully ac-
complish long-horizon tasks in the simulation environment.
However, these IL-based methods require a large and diverse
set of high-quality demonstration data. Acquiring such data on
actual robots is a process that demands considerable time and
resources. Contrary to prior efforts in language-conditioned
research, our work emphasizes the utilization of language
instructions to steer the denoising diffusion process, where
the target states of objects will be estimated and used for the
subsequent robot planning.

B. Large Foundation Models in Robotics

Recently, large foundation models based on language
and vision have become a dominant paradigm in solving
long-horizon robotic manipulation tasks [2]], [[19]-[22]. They
demonstrate strong few-shot or zero-shot reasoning ability to
any text or vision input through just prompting by human
instructions [23]]. SayCan [20] uses a large language model
(LLM) to perform various tasks, where language objectives
are destructed into a hierarchical sequence of instructions.
These instructions are subsequently fed into skill-oriented
value functions and search heuristics to obtain optimal action
sequences. Informed by multimodal prompting, Socratic Mod-
els [21] exhibits a modular framework to capture multimodal
information and leverage LLMs to achieve zero-shot robotic
perception and planning. Furthermore, Code-as-Policies [2]
adopts the LLMs to generate a policy code of robot action,
showing LLMs have a strong programming ability in con-
trolling robots by recomposing perception and controller API
functions. Utilizing the capability to generate codes, [22] uses
LLMs to integrate 3D value maps into the robotic observation
space after inferring affordances and constraints from language
instructions, which produces low-level control on the contact-
rich manipulation tasks successfully. Nevertheless, the final
goal states of each robot task from previous work on LLMs
remain predominantly predefined, relying on human expertise
or demonstrative guidance encapsulated within the prompt
instructions. In contrast, our work adopts the diffusion model
to make the robot imagine an appropriate rearranged layout
from different objects autonomously. This conceptualization
is subsequently incorporated as a visual cue within the VLMs
module to facilitate the generation of robotic policy code.

C. Diffusion Models

In the computer vision field, diffusion models have risen to
prominence as leading generators of data, distinguished by
their ability to accurately model complex distributions and

generate a diverse array of high-quality samples. [24]], [25].
The concept draws inspiration from the physical phenomenon
of diffusion, where particles migrate from regions of higher
concentration to lower concentration until a state of balance
is achieved. Many applications from diverse domains, such as
text, image, audio, and video, demonstrate that diffusion mod-
els can significantly improve the quality, realism, and creativity
over previous generative models [26], [27]. Especially for the
text-to-image diffusion models, their groundbreaking synthesis
abilities with input from text description can significantly
improve creating efficiency [28], [29]. However, these models
offer limited control over the content they generate, primarily
achieved through a single text-based input modality. Some
techniques have been developed to enhance performance and
gain more precise control using various input types, such as
contextual layouts and class labels. These techniques strive to
finely tune the creation of content by adjusting the generation
process following the model that has been pre-trained. [|30]—
[32]]. Taking an example of the inpainting task, [32] proposes a
solution to achieve image inpainting successfully by leveraging
a pre-trained vision-language model (CLIP), where the inpaint-
ing process is guided from a text description along with an
ROI mask. Inspired by the recent development of controllable
diffusion models, we design our diffusion architecture by
considering natural language instruction, designated placement
position, and diverse object attributes to generate a clean scene
for different initial messy scenes.

D. Tabletop Robot Rearrangement

The objective of an intelligent robotic rearrangement sys-
tem is to equip robots with the ability to understand their
surroundings and interact with humans, thereby achieving
precise and efficient object repositioning according to different
structures or criteria that reflect human preferences [10]. Var-
ious approaches have been explored to tackle this challenge.
Typically, [33] proposes to utilize an RL strategy based on
the proximal policy optimization (PPO) algorithm to push
irregular objects on the table inside a crate, which is hard to
generalize to other rearrangement tasks because of the fixed
position of the crate on the table. To improve the generaliz-
ability, VIMA [34] introduces prompt-based learning to train
a multimodal generalist agent, achieving a simple zero-shot
robot arrangement setting in the simulation environment. Nev-
ertheless, it is still difficult to deploy in real robot experiments
due to the lack of human-designed visual prompts. Moreover,
[10] first introduces the concept of semantic structure in the
robot arrangement task, which necessitates a robot’s ability
to understand the relationships between scattered objects and
subsequently rearrange them into a spatial structure instructed
by human languages. However, the efficiency is compromised
by its sequential processing, where the goal state of the current
object is estimated only after finishing the arrangement of the
previous object. To address this inefficiency, StructDiffusion
[7] implements a 3D diffusion-based approach based on the
same dataset, achieving a better rearrangement performance.
However, we found that the predicted object states for a given
structure demonstrate negligible layout adaptability on the ta-
ble when the initial messy observation and motion distance of



objects between the messy scene and the rearranged scene are
not taken into account. This issue largely results from all target
object states being derived from predetermined Gaussian noise
throughout the denoising diffusion process. Moreover, the
inherent design of the dataset presents challenges in enabling
scattered objects to form varied structures upon completion of
the rearrangement process.

To overcome the limitations in prior work, we first con-
struct a dataset consisting of different semantic structures
corresponding to language instructions where the same messy
scenes can exhibit different goal scenes. Primarily, we add the
containing structure in our rearrangement task as it represents
an important application in the industrial sorting task. Further-
more, we design a transformer-based multi-modal diffusion
architecture to generate goal states of objects according to
language commands and prior observation. For the sake of
improving real-world rearrangement efficiency, we also add a
constraint to minimize the average moving distance of objects.
To reduce human intervention when executing such a long-
horizon task, we further integrate the proposed target genera-
tion network into a VLM module via prompt-based learning,
where robot policy codes are generated autonomously.

III. PROBLEM STATEMENT

We introduce DreamArrangemnt, a novel robotic arrange-
ment scheme designed to comprehend diverse human language
instructions and the distribution of 2D object scenes including
variations in attributes like semantic classes, geometric shapes,
and placements of multiple objects, which shows the ability
to perform a long-horizon manipulation task autonomously.

We consider the initial tabletop scenes where all objects are
scattered in an image coordinate system, starting from the top
left corner as the origin. In each messy scene S, we depict
a combination of of a table T" and objects {o1,...,on}. To
achieve semantic rearrangement based on human preference,
a structure-based language instruction £ (e.g., “rearrange
all objects into a circle shape”) is also given. To enhance
contextual understanding, we further employ approaches from
text summarizing (e.g., prompt-based LLM parsing or search-
based word dictionary) to decompose the abstract language
into specified word tokens £ — (l,k,...,1,). This study
primarily explores the challenge of generating a language-
conditioned clean object scene S* for a robot r. S* can be
directly used in the planning phase as a visual prompt module
in the VLM planner, finally generating a manipulation policy
P. We formulate this as an optimization problem to use the
robot r to rearrange a “messy” scene S under a language
instruction £ via learning a bijection f of paired objects and
minimizing their motion distance, referring to the ground truth
“clean” scene S:

f* - arg;nin ]:arrangement(sy £) + )\]:motion(sa £)7

s.t. farrangement(sa E) - f(Sa ‘C) - ga (l)
‘FWLOtiOTL(Sa ‘C) = f(Sy L) - Sv

where A is the weight hyperparameter of the Fotion (S, £)
term. Then the policy can be expressed as:

P =VLM(S, f*(5,£), L), 2

More specifically, each object o in the input scene S is
defined by its semantic class ¢ € RY, 2D oriented bounding
box size s € R2, object translation ¢ € R2, and object rotation
T € SO(2 respectively. Since the containing structure is a
special semantic scene, we define an additional ‘mask’ object
class m to represent containers like plates and tables. Besides,
we use type tp € R7 instead of ¢ to differentiate different
containers. In summary, we denote each scene S as follows:

S ={mi,...,04,..},m; = (ti, 13,8, tp;), 00 = (ti, 14,54, C;).

3)
The object semantic class label ¢; and container type label
tp; are represented as one-hot vectors of C' and T classes,
respectively, and the 2D bounding box size s; is obtained by
performing the principal component analysis (PCA) and then
computing the positional relation of 4 corners. The values of
translation ¢; and rotation r; are characterized by calculating
the center position and the orientation angle of the bounding
box. To facilitate a stable training process, we further use the
normalization operation to make ¢; and s; into the same range
of [-1,1] as ;.

IV. METHODOLOGY
A. Denoising Diffusion Models

Denoising Diffusion Models [24], [35]] are a class of gen-
erative models that learn data distribution by progressively
denoising from a tractable noise distribution. Below, we
provide a brief preliminary introduction from a score-based
perspective. For more details, please refer to [35]. Given
various samples from an unknown data distribution g (), our
goal is to train a model capable of generating new samples that
mimic the original distribution go (x). A critical mechanism
employed in this endeavor is Langevin dynamics, a concept
borrowed from the domain of physics. This approach can
produce samples from a distribution pg.+. () when its score,
defined as its gradient V,log pgata(x), is known. Starting
from x7 of any prior distribution, the Langevin method
recursively denoises the data as follows:

Ti_1 =T + Vg, log qo (z¢) + Bee, €]

where «; and §; are pre-defined step sizes associated with
the time step ¢ and € ~ N(0,1) is a stochastic term. As T
becomes sufficiently large, the final obtained x( will converge
to a sample drawn from gg(z).

We aim to train a neural network sy to approximate the
score of the target distribution. The denoising score matching
technique [36] is adopted to make the estimation of score
tractable, with the key insight being to utilize conditional
distribution settings. This involves perturbing zo ~ g¢o(z)
with various noise kernels g; (z¢|zo) across a spectrum of
step parameters ¢t ~ U[1,T]. The original score match-
ing objective of the perturbed distribution ¢;(x) can be ex-
pressed as Eq, (s, 20)qo(xo) |56 (1) — Vi, log qu (w4|z0)%. As
demonstrated in [35]], the final optimal network parameter
6* for this objective should ensure sgp«(z) = V,logg: ().
Moreover, when employing Gaussian kernels g¢; (z¢|z¢) =

IThe first column of the rotation matrix is used.



TABLE I
OBIECT ATTRIBUTES AND SPATIAL STRUCTURES IN OUR DATASET

Entity Type Name
class (22) apple, bear, b_anana, bowl, 'box, can, cracker_box,
Obiect attributes cup, fork, knife, lemon, milk...
Ject altributes 1 aterial 3) YCB texture, metal, wood

scale ratio (3)
global structure
local regularity

0.8,1.0,12
horizontal, vertical, circle, containing
symmetry, uniformity

Spatial structures

N (xg,0?) with pre-defined noise levels oy, the score of the
conditional probability density can be analytically derived
as Vg, logq; (w¢|zg) = *25*. Consequently, the unified
objective amalgamating all procedural steps is formulated as:

o — Tt
Lscore(e) = Et~lx{[1,T],qt(:rt\zo)qo(mo)At Se(xt) - T )
t
®)
where )\; denotes the objective weight, pragmatically set to
2
o;.

In summary, we need to first optimize the score network
s¢ to minimize objective Eq. [5] After that, we use the trained
model sg«(x;) to incrementally refine the approximation of
Ve, logqo (x;) as per the Langevin dynamics, facilitating an
update along the Markov chain with Eq. [] to generate new
samples ultimately.

B. 2D Object Rearrangement Dataset

To facilitate tabletop robotic rearrangement, it’s necessary
to collect a large object rearrangement dataset which includes
different object categories and spatial structures. However, col-
lecting such a dataset involving complex physical interactions
in the real world can be time-consuming, labor-intensive, and
costly. In this work, we collect a 2D synthetic dataset based on
the Mujoco physics simulator, consisting of 2223 clean object
scenes. A physics simulator can help us precisely control
the position, orientation, scale, and texture of each object
and keep each object in the rearrangement scene collision-
free and penetration-free. Additionally, it is convenient for
us to describe each clean rearrangement structure with high-
level language instruction. Specifically, we adopt 22 household
object models from the YCB objects and ShapeNet objects
as our object database. For each valid clean scene in the
dataset, we preprocess it using instance segmentation and
extract the oriented bounding box of each object as its explicit
representation. The obtained scene S will be regarded as our
target output of the generation model. To simulate different
messy scenes in our daily lives, we further perturb the target
scene on the fly to generate clean-messy pairs and re-associate
objects within each category, where the generated messy
scenes will serve as the input data.

More importantly, high-level language instruction corre-
sponding to a structure usually conveys different object layouts
in the real world. As seen in Fig.[2] when we tell the household
robot: “Based on the current messy scene, please rearrange
the apple, lemon, orange, and peach into a horizontal shape”,
the mainstream solutions [S[]—[7] will make the robot arrange
objects into a centered layout as in clean scenel, which is
a common pattern in their training data. However, according

“"Rearrange the
apple, lemon,
o orange and
e peach into a

o 5 horizontal shape.”

® 000
® 000

Messy scene Language prompt Clean scene1 Clean scene2

Fig. 2. Comparison of different generation results for clean scenes based on
the same messy scene and language prompt.
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Fig. 3. The four kinds of global structures in our dataset: horizontal, vertical,
circle, and containing.

to our human experience, we prefer to arrange the unordered
objects into clean scene2, because it can save a large amount of
time and effort. Therefore, to avoid the drawback in previous
works that diverse initial scenes are arranged into the identical
layout given the same instruction, we adopt the technique of
data augmentation to enrich layout variations of target scenes
with the same structure in our dataset.

Another rearrangement setting is that we want to arrange
the same configuration on the table into different structures
given different language prompts. We further design four kinds
of physically meaningful spatial structures to pair with text
descriptions. As shown in Fig. [3] the structures of horizontal,
vertical, and circle represent all objects forming a horizontal,
vertical, and circle shape globally, respectively. Since the
containing structure involves the additional ‘mask’ object class
m;, we describe it as placing different objects in different con-
tainers, including plate-like containers and box-like containers.
The semantic and geometric parameters of these containers
will also be employed in the containing rearrangement task.

Moreover, to distinguish the difference of local distribution
in real-world table settings, we introduce the concept of
symmetry and uniformity in language instruction. Taking forks,
knives, and plates as an example, symmetry represents that a
pair of knives and forks are placed on varied sides of the plate
while uniformity denotes that knives and forks are positioned
on the same side of the plate. Finally, all object attributes and
spatial structures in our dataset are shown in Tab. [I}

C. Vision and Language Parsing

Based on our collected synthetic dataset, we further propose
a scheme for solving the tabletop rearrangement task as shown
in Fig. Bl A messy scene S and a high-level text description
L from human language are taken as the input.

Object Detection and Parameterization: In order to obtain
the geometric and semantic attributes of all objects, including
o; and m;, in the messy scene S, we first adopt the latest
Grounded Segment Anything Model (SAM) [37]], which has
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Fig. 4. An overview of the proposed conditional rearrangement diffusion network. (a) We sample the combinations of text descriptions from the humans with
the messy observation as input. (b) The parsing process is to obtain explicit object attributes and word tokens from input. (¢) We build a denoising diffusion
framework with transformer architecture that separately encodes object attributes and word tokens into latent space. (d) To achieve the rearrangement task,
the direction of translation and rotation of each instance are iteratively refined during the limited denoising steps 7.

( Example of GPT-4 Prompts N

Task Info:

Based on the background Information, please map the language instructions about object rearrangement to appropriate object
name, available label of global structure and local regularity.

Available label of global structure: horizontal, vertical, circle and containing

Available label of local regularity: symmetry and uniformity

Background Info1:
Here are the instance segmentation results of all objects:
There is an apple, a bottle, a banana and a plate on the table.

Background Info2:
Here are the instance segmentation results of all objects :
There is a knife, a fork, a spoon and a plate on the table.

Prompt Info1:

Example: Rearrange all objects into the container.

Output: {objects: [“apple”, “bottle”, “banana”, "plate”],
structure: containing, regularity: none}

Prompt Info2:
Example: Rearrange all objects into a circle shape with symmetry.
Output: {objects: [“knife”, ” fork”, ” spoon ", "plate”],

structure: circle, regularity: symmetry}

= J

Fig. 5. Example of GPT-4 prompts that map human language instruction and
segmentation results from vision parsing to concise word tokens.

shown a strong zero-shot ability for object recognition and in-
stance segmentation. Then the segmented results are subjected
to principal component analysis (PCA) to get the oriented
bounding box of each object. Specifically, the values of object
translation ¢, and rotation r; are derived by averaging all pixel
points p,, of the object and establishing the covariance matrix:

1 M
ti= 1 m;pm, (6)
T 1 “ T
T = 31%123:)(1 v M_1 mZ:l(pm —t)(pm — ti)" | v,
@)

where M is the number of pixel points in the segmented
object and the vector v indicates the projection direction to be
searched for. Next, we employ separate neural network layers
to encode the geometric and categorical features to obtain the
instance embedding for the regular object o, and the mask
embedding for the container object m;.

Text Summarization: To encode the natural language in-
struction into implicit representation, we need to distill the
most important information and convert it into a condensed
form. In this work, we adopt the concept of text summarization
to capture the key essence from the text description and
visual clues and then stitch them together. For most language-

conditioned robotic works [10], [[14], they generally need to
retrain an extra language model based on a pre-trained CLIP
or MiniLM model on their self-deigned task-oriented sentence
dataset to achieve text summarization.

To enhance the efficiency and multimodal adaptability of
the summarization process, we use prompt-based learning via
GPT-4 to achieve contextual understanding and generate word
tokens. As the most advanced language model, GPT-4 has a
vast knowledge base and linguistic proficiency, allowing it to
produce the concise summaries that humans want. An example
of prompts in Fig. [5] shows that GPT-4 can learn to produce
outputs tailored to our specific mapping tasks by providing
prompts that are representative of the summarization task. To
enable word embedding, we further use the strategy of label
encoding to assign a unique integer to each class of labels in
the generated word tokens.

D. Conditional Rearrangement Diffusion Network

The architecture of the proposed conditional rearrangement
diffusion network is illustrated in Fig. ] The transformer
structure is employed as it is adept at fusing the information
from different modalities. We first encode various scene object
attributes and parsed word tokens into latent tokens, which are
then processed by the multi-modal transformer. The network
outputs translation and rotation predictions for each instance,
and a diffusion scheme is adopted to successively refine the
pose of each object. Below, we elaborate on each component
of our network.

Token Encoder: The input tokens of the transformer in-
clude word embedding, mask embedding, and instance embed-
ding. The word embedding represents the language instruction
used to specify the target configuration. We map the parsed
global structure and local regularity types to learned embed-
dings, which is conducive to identifying the commonalities
of instructions faster during training compared to encoding
the whole sentence with language models. Next, as defined in



Sec. the attributes of container objects and regular objects
contain continuous variables such as translation, rotation, and
size, as well as discrete variables like type and class. Similar
to [8]], we employ positional encodings of certain frequencies
and subsequent linear layers to convert ¢;, r;, and s; into
vectors. As for discrete properties, a multilayer perceptron
(MLP) is adopted to map one-hot vectors to high-dimensional
latent. The above features are concatenated and then processed
through an MLP to form the mask embedding and the instance
embedding. This object-centric representation encodes each
object separately, and 2 sets of specific MLPs are applied for
mask and instance, respectively. Furthermore, a learned type
embedding T, which is utilized to distinguish different types
of tokens (Word, Mask, and Znstance), is concatenated to the
aforementioned embeddings as follows:
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where T and T’ represent the embedding of each modality and
the final input token for the transformer, respectively.

Multi-Modal Transformer: We adopt the conventional
encoder-only transformer architecture as the backbone. Our
multi-modal transformer is a stack of several standard trans-
former blocks [38]], consisting of the multi-head self-attention
module and the position-wise feed-forward module. The self-
attention mechanism helps the model enact the interactions
between multiple objects, which allows it to be regarded as a
fully connected graph structure. Besides, the language token
and the mask token serve as conditional constraints and affect
posture prediction through attention calculation. In the end,
we build our network decoder as a two-layer MLP to output
the denoised direction of ¢; and r; for each instance.

Efficiency-oriented Rearrangement Learning: To im-
prove the interpretability of the network in our rearrangement
task, we reparameterize the original score-based model sy to
€ = 0?59 as our multi-modal denoising diffusion model,
indicating that the optimization of Eq. 5] evolves into a noise
prediction problem. For the forward process during model
training, we add sampled Gaussian noise with a specific
standard deviation to the translation and rotation parameters
of each object in the clean scene to formulate noisy S, which
allows for the generation of various perturbed scenes with
different levels of noise for one clean scene. After that, a
reversed denoising process is learned by projecting S; to the
clean scene manifold via noise prediction.

As formulated in Eq. we also want to minimize the
motion distance between the initial messy scene and the rear-
ranged clean scene. For most denoising diffusion works based
on high-dimensional image space, it is typically presumed
that the original image constitutes the nearest projection to
its version perturbed by noise. However, each object instance’s
pose information in our task is low-dimensional data. This dis-
crepancy suggests that with the introduction of different noise
levels, the optimal projection target for a messy scene might
not necessarily be consistent with the initially intended clean
scene. Especially when applied to practical applications, such
as food preparation or tabletop arrangement, the efficiency cost
is enormous if persistently converting diverse messy scenes
into the same specific layout.

Thus, we propose several techniques to ensure that the
rearranged scene shares more similarities with the initial
messy scene. First, we re-associate instances within the same
class. Taking a language instruction as an example: “Please
rearrange all small boxes into a circle shape”, we re-establish
the pairing relationship p among all boxes between the current
messy scene S and the target clean scene S by computing their
Earth Mover’s Distance [39]:
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where n is the number of instances in the scene, ¢ and
t represent translation parameters of S and S, respectively.
During training, we choose tp () with the optimal pairing
relationship p* instead of #, to construct S, which hopefully
encourages a more efficient movement during rearrangement.

Second, as shown in Fig. horizontal and vertical struc-
tures possess a certain degree of ambiguity. Drawing on
the principles of least squares approximation from statistical
analysis, we further propose to pan the clean scene along the
relevant axis. This is to ensure that the average position of
all instances in the optimal 