loading page

s with a 49GHz Kerr soliton crystal microcomb
  • David Moss
David Moss
swinburne university of technology, swinburne university of technology

Corresponding Author:[email protected]

Author Profile

Abstract

We report world record high data transmission over standard optical fiber from a single optical source. We achieve a line rate of 44.2 Terabits per second (Tb/s) employing only the C-band at 1550nm, resulting in a spectral efficiency of 10.4 bits/s/Hz. We use a new and powerful class of micro-comb called soliton crystals that exhibit robust operation and stable generation as well as a high intrinsic efficiency that, together with an extremely low spacing of 48.9 GHz enables a very high coherent data modulation format of 64 QAM. We achieve error free transmission across 75 km of standard optical fiber in the lab and over a field trial with a metropolitan optical fiber network. This work demonstrates the ability of optical micro-combs to exceed other approaches in performance for the most demanding practical optical communications applications.