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This document is a supplementary material to the article submitted to IEEE Antennas and Propagation Magazine: 

“Explicit Definitions for the Electromagnetic Energies in Electromagnetic Radiation”. Readers can also access to a 
50min video on IEEE TechRxiv: A Theory for Electromagnetic Radiation and Electromagnetic Coupling (techrxiv.org). 
The main revisions in version 4 are: (1) delete the part about mutual couplings; (2) changed some denotations, e.g., 

the primary radiative energy and primary radiative power are denoted respectively by 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ  and 𝑃௥௔ௗ

௣௥௜ሺ𝑡ሻ;(3) added 
a reference [21] to show that potentials may be gauge invariant if they are subject to some conditions. 

This document includes 6 parts: (1) background of the work. (2) the reason to introduce the macroscopic Schott 
energy. (3) detailed derivation of the explicit expressions for the energies of a pulse radiator in free space. (4) detailed 
derivation for the energies and powers of the Hertzian dipole. (5) explanation to the negative energy that may appear 
in sources like a loop current. (6) the numerical techniques used to calculate the energies.  

 

1. Background of the Work 
 

The reactive energy f an antenna has been investigated by many researchers, and the frequency domain calculation 
methods proposed so far can be roughly divided into two types: 

(1) Methods in early stage, mainly based on spherical mode expansion technique [1]-[3].  
 In 1948, Chu discussed in his paper [4] the radiation problem associated with electrically small antennas, and 

derived ladder type equivalent circuits for 𝑇𝑀௡଴/𝑇𝐸௡଴ spherical waves. The reactive energy only includes those 
stored in the reactive elements in the equivalent circuit, hence is bounded and can be accurately evaluated.  

 Collin [1] calculated the reactive energies strictly with fields obtained using mode decomposition method [5][6], 
where the reactive energies of spherical modes and cylindrical modes are obtained by directly integrating the 
term ሺ𝜀଴ 4⁄ ሻ𝐄 ∙ 𝐄∗and ሺ𝜇଴ 4⁄ ሻ𝐇 ∙ 𝐇∗ in the whole space outside a sphere with a small radius. Since the integration 
is infinite, the energy density associated with the radiation fields has to be subtracted from the integrand.  

 Fante [2] extended the results of Collin, and McLean re-examined the case of small antennas and calculated 
the Q factors of 𝑇𝑀ଵ଴ and 𝑇𝐸ଵ଴ mode [3].  

For small antennas, spherical mode expansion solution for reactive energy is a good approximation, and can provide 
satisfactory upper bound for Q factors. It has been extended to analyzing antennas with larger sizes [7], where the 
radiation fields by a current distribution are expanded with spherical modes. However, it is not efficient because a lot 
of modes may need to be taken into account for antennas with large size and complicated structures. Furthermore, the 
fields inside the sphere enclosing the antenna cannot be addressed accurately.  

(2)  Numerical methods investigated by many researchers [8]-[14].  
The key problem is the total electromagnetic energy of an antenna is unbounded when it works in harmonic state 

because the total radiative energy of the antenna is unbounded, as the antenna is assumed to keep radiating in the 
whole timespan of െ∞ ൏ 𝑡 ൏ ൅∞. However, there is no well-accepted method to separate the reactive energy and the 
radiative energy. An empirical strategy is to subtract an additional term of energy density associated with the radiation 
fields from the integrand. Unfortunately, the result is usually not the exact solution to the reactive electromagnetic 
energy, and the additional energy density is ultimately an ambiguous concept without a rigorous definition. Two 
representative formulations are the follows,  
 Yaghjian and Best have adopted this method to calculate the Q factor of antennas [8]. They used the reactive 

theorem by Rhodes in [15], which can be simplified in free space as 

|𝐼଴|ଶ𝑋଴ᇱ ൌ lim
௥→ஶ

൛׬ Reሺ𝑩 ⋅ 𝑯∗ ൅ 𝑫∗ ⋅ 𝑬ሻ 𝑑𝑉
௏

െ 𝑟ଶ Im׬ ൫𝐄 ൈ 𝐇ᇱ
୍బ
∗ െ 𝐄ᇱ ൈ 𝐇୍బ

∗ ൯ ⋅ 𝐫ොdΩସ஠
ൟ (1) 

where 𝐼଴ is the excitation current at the feeding port of the antenna. The primes stand for derivatives w.r.t 𝜔, 
and 𝑋଴ is the input reactance at the feeding port when it is tuned with a series positive inductance or capacitance. 
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𝑉is the spherical domain with radius 𝑟. The term ׬ Reሺ𝑩 ⋅ 𝑯∗ ൅ 𝑫∗ ⋅ 𝑬ሻ 𝑑𝑉
௏

 is related to the conventionally defined 

electromagnetic energy. In Yaghjian-Best formulation, (1) is transformed into 

|𝐼଴|ଶ𝑋଴
ᇱ ൌ 𝑙𝑖𝑚

௥→ஶ
ቄ׬ 𝑅𝑒ሺ𝑩 ⋅ 𝑯∗ ൅ 𝑫∗ ⋅ 𝑬ሻ 𝑑𝑉 െ 2𝜀଴𝑟 ׬ 𝐹ଶ𝑑𝛺

ସగ௏
൅

ଶ

ఎబ
𝐼𝑚 ׬ 𝑭ூబ

ᇱ ⋅ 𝑭∗𝑑𝛺
ସగ

ቅ (2) 

where 𝜀଴ and 𝜂଴ are respectively the permittivity and intrinsic impedance in free space, and 𝑭 is the far electric 
field. The first two terms in RHS of (2) are considered as the reactive electromagnetic energy in Yaghjian-Best 
formulation, which is coordinate dependent, 

 𝑊ி ൌ 𝑙𝑖𝑚
௥→ஶ

׬ 𝑅𝑒ሺ𝑩 ⋅ 𝑯∗ ൅ 𝑫∗ ⋅ 𝑬ሻ 𝑑𝑉 െ 2𝜀଴𝑟 ׬ 𝐹ଶ𝑑𝛺
ସగ௏

      (3) 

 We have calculated the Q-factor of a grid antenna with 𝑊ி . When we choose the origin on the yellow circle, 
the Q-factor changes because 𝑊ி changes with the origin, as shown in Fig.1.  

  
Fig. 1. Grid antenna. (a) Structure. (b) Q factor calculated with 𝑊ி . 

 
 Vandenbosch [16] proposed a set of formulae for calculating the reactive energies, which are expressed in 

closed form of integrations with respect to the current densities in the antenna structure. In free space, the core 
equation Vandenbosch formulation, can be simplified as 

െଵ

ଶ
׬ 𝑬ᇱ ⋅ 𝑱∗
௏ೞ

𝑑𝑉 ൌ 𝑃௥௔ௗ
ᇱ ൅ 𝑗 ቂ𝑙𝑖𝑚

௥→ஶ
׬ 𝑅𝑒ሺ𝑫∗ ⋅ 𝑬 ൅ 𝑩 ⋅ 𝑯∗ሻ 𝑑𝑉
௏

൅ 2𝑊௥௔ௗ,ீቃ ሺ4ሻ 

where the additional term is 

 𝑊௥௔ௗ,ீ ൌ 𝑙𝑖𝑚
௥→ஶ

𝐼𝑚 ଵ

ସ
∮ ሺ𝑬ᇱ ൈ 𝑯∗ െ 𝑬 ൈ 𝑯ᇱ∗ሻ ⋅ 𝒏ෝ𝑑𝑆
ௌ

 ሺ5ሻ 

In Vandenbosch formulation, ൫െ0.5𝑊௥௔ௗ,ீ൯ is used as the additional term to replace the term associated with 
the radiation power. With this modification, the reactive energy can be directly computed with a set of closed-
form expressions that are coordinate-independent. Gustafsson and Jonsson evaluated 𝑊ி analytically to get 
[17], 

 𝑊ி ൌ 𝑊௩௔௡ ൅𝑊ிమ ሺ6ሻ 

where 𝑊௩௔௡ ൌ ቀ𝑊௩௔௖
௠ ൅𝑊௩௔௖

௘ ൅𝑊௥௔ௗ，ீቁ is the total reactive energy in Vandenbosch formulation, and 𝑊ிమ is a 

coordinate-dependent term.  
Yaghjian-Best formulation and Vandenbosch formulation have attracted many attentions from researchers [18]-[23]. 

They have been successfully applied to analysis and optimization of small antennas [24]-[29]. The Vandenbosch 
formulation has been extended to time domain [30][31]. However, it is reported that the Vandenbosch formulation can 
produce negative values of stored energy for electrically large structures [28], which has not been satisfactorily 
explained. Furthermore, the formulation in time domain may give results that are a little bit different from those obtained 
with the formulation in frequency domain [31]. 

There are other methods to calculate the reactive energies [32]. A comprehensive comparison of them can be found 
in [22]. However, for those methods that require to evaluate the reactive energies, 𝑊ி and 𝑊௩௔௡ are the most popular 
choices.  

(3) Our formulation in frequency domain [33][34].  
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Since 2019, we have careful re-examined this issue and found that the difficulty involved in reactive energy can be 
traced back to an old classical problem: for a given time-varying current distribution 𝐉ሺ𝐫, 𝑡ሻ in domain 𝑉௔ , how to 
determine the reactive electromagnetic energy stored in the whole free space. We cut into this issue by focusing on 
the following two equations, 

 𝑊௘ ൌ ׬
ଵ

ଶ
𝜌𝜙𝑑𝒓ଵ௏ೌ

ൌ ׬
ଵ

ଶ
𝑬 ⋅ 𝑫

௏ಮ
𝑑𝒓ଵ ሺ7ሻ 

 𝑊௃ሺ𝑡ሻ ൌ
ଵ

ଶ
׬ 𝑱 ⋅
௏ೌ

𝑨𝑑𝒓ଵ ൌ ׬
ଵ

ଶ
𝑩 ⋅ 𝑯

௏ಮ
𝑑𝒓ଵ  ሺ8ሻ 

It is easy to check that the second equation in (7) and (8) do not hold true for electro-dynamic fields. We argued that 
the two source-potential terms must be the correct definition for the reactive energies. Although we now believe that 
the choice is reasonable and is in consistent with their time domain formulation, we realized later that some of the 
discussions and statement are not rigorous or even not correct because of our superficial understanding to the issue 
at that time. For example, we did not clearly emphasize that the source-potential term is only for the reactive energy 
not the total electromagnetic energy. We tried to fix this in a conference paper [34], however, the formulation, together 
with the time domain formulation proposed in this article, are still regarded by some reviewers to be the same as the 
Carpenter formulation, or simply a static limit one. We have clarified in this article that they are not. 

As is clear, the main difficulty in frequency domain formulation is due to the fact that the radiative energy of a 
harmonic source is unbounded. It is then natural to investigate the energy issue associated with a pulse radiator, as 
its radiative energy and the reactive energy should be finite, so is its total electromagnetic energy. As has discussed 
in the article, mainly two kinds of time domain formulations for this issue can be found in published literatures. Except 
that proposed by Vandenbosch [30][31], the other one was proposed by Shlivinski and Heyman [13][14], which is an 
approximate method. So we kept on considering on this issue in the past two years because we firmly believe that the 
issue is still of great significance to antenna society and should be solved. Moreover, we realized that the most 
important and essential case is the radiation problem in vacuum. If the electromagnetic energy issue in vacuum remains 
to be ambiguous, it is much more difficult to solve it when media are included. We finally get a satisfactory energy 
separation formulation in vacuum by introducing the macroscopic Schott energy, and verified that the formulation is in 
consistent to the frequency domain formulation that we have proposed 2 years ago. Meanwhile, the proposed theory 
can provide a better understanding of some ambiguous concepts in our previous versions of the formulation.   

 
2. Why to Introduce Macroscopic Schott Energy 

 
Consider in free space a radiator with charge density 𝜌ሺ𝐫ଵ, 𝑡ሻ and 𝐉ሺ𝐫ଵ, 𝑡ሻ, 𝐫ଵ ∈ 𝑉௦ . From Maxwell equations, the 

electric energy density and the magnetic energy density can be transformed to  

 ଵ

ଶ
𝑫 ∙ 𝑬 ൌ ଵ

ଶ
𝜌𝜙 െ ଵ

ଶ
𝑫 ∙ డ𝑨

డ௧
െ ଵ

ଶ
𝛻 ∙ ሺ𝑫𝜙ሻ  ሺ9ሻ 

 ଵ

ଶ
𝑩 ∙ 𝑯 ൌ ଵ

ଶ
𝑱 ∙ 𝑨 ൅ ଵ

ଶ

డ𝑫

డ௧
∙ 𝑨 െ ଵ

ଶ
𝛻 ∙ ሺ𝑯 ൈ 𝑨ሻ  ሺ10ሻ 

where 𝑬 and 𝑯 are the electromagnetic fields, 𝑫 and 𝑩 are the flux densities. The scalar potential 𝜙 and the vector 
potential 𝑨 are subject to the Lorentz Gauge and their reference zero points are put at the infinity. For a pulse radiator 
in ሾ0,𝑇ሿ, the total electric energy and the total magnetic energy can be written as 

𝑊௧௢௧
௘ ሺ𝑡ሻ ൌ ׬ ቀ

ଵ

ଶ
𝑫 ∙ 𝑬ቁ𝑑𝒓ଵ௏ಮ

ൌ ׬ ቀ
ଵ

ଶ
𝜌𝜙ቁ𝑑𝒓ଵ௏ೞ

൅ ׬ ቀെ
ଵ

ଶ
𝑫 ∙ డ𝑨

డ௧
ቁ 𝑑𝒓ଵ௏ಮ

െ ∮
ଵ

ଶ
𝜙𝑫 ∙ 𝒏ෝ𝑑𝑆

ௌಮ
  ሺ11ሻ 

𝑊௧௢௧
௠ ሺ𝑡ሻ ൌ ׬ ቀ

ଵ

ଶ
𝑩 ∙ 𝑯ቁ𝑑𝒓ଵ௏ಮ

ൌ ׬ ቀ
ଵ

ଶ
𝑱 ∙ 𝑨ቁ 𝑑𝒓ଵ௏ೞ

൅ ׬ ቀ
ଵ

ଶ

డ𝑫

డ௧
∙ 𝑨ቁ 𝑑𝒓ଵ െ ∮

ଵ

ଶ
ሺ𝑯 ൈ 𝑨ሻ ∙ 𝒏ෝ𝑑𝑆

ௌಮ௏ಮ
  ሺ12ሻ 

The surface integrals in the right hand side of  (9) and (10) are zeros for pulse radiators because their fields never 
reach 𝑆ஶ. Denote  

 𝑊ఘሺ𝑡ሻ ൌ ׬
ଵ

ଶ
𝜌ሺ𝒓ଵ, 𝑡ሻ𝜙ሺ𝒓ଵ, 𝑡ሻ

௏ೞ
𝑑𝒓ଵ  ሺ13ሻ 

 𝑊௃ሺ𝑡ሻ ൌ ׬
ଵ

ଶ
𝑱ሺ𝒓ଵ, 𝑡ሻ ∙ 𝑨ሺ𝒓ଵ, 𝑡ሻ

௏ೞ
𝑑𝒓ଵ  ሺ14ሻ 

𝑊ఘ௃ ൌ 𝑊ఘ ൅𝑊௃ is the Coulomb-velocity energy. It is generally considered that the total electric/magnetic consists of an 

electric/magnetic radiative energy and an electric/magnetic reactive energy, namely,  

𝑊௧௢௧
௘ ሺ𝑡ሻ ൌ 𝑊௥௘௔௖௧

௘ ሺ𝑡ሻ ൅𝑊௥௔ௗ
௘ ሺ𝑡ሻ,  𝑊௧௢௧

௠ ሺ𝑡ሻ ൌ 𝑊௥௘௔௖௧
௠ ሺ𝑡ሻ ൅𝑊௥௔ௗ

௠ ሺ𝑡ሻ  ሺ15ሻ 
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If we define 𝑊௥௘௔௖௧
௘ ሺ𝑡ሻ ൌ 𝑊ఘሺ𝑡ሻ,  𝑊௥௘௔௖௧

௠ ሺ𝑡ሻ ൌ 𝑊௃ሺ𝑡ሻ, then we have to admit that  

𝑊௥௔ௗ
௘ ሺ𝑡ሻ ൌ 𝑊௧௢௧

௘ ሺ𝑡ሻ െ𝑊௥௘௔௖௧
௘ ሺ𝑡ሻ ൌ ׬ ቀെ

ଵ

ଶ
𝑫 ∙ డ𝑨

డ௧
ቁ 𝑑𝒓ଵ௏ಮ

  ሺ16ሻ 

𝑊௥௔ௗ
௠ ሺ𝑡ሻ ൌ 𝑊௧௢௧

௠ ሺ𝑡ሻ െ𝑊௥௘௔௖௧
௠ ሺ𝑡ሻ ൌ ׬ ቀ

ଵ

ଶ

డ𝑫

డ௧
∙ 𝑨ቁ 𝑑𝒓ଵ௏ಮ

  ሺ17ሻ 

which means that 𝑊௥௔ௗ
௘ ሺ𝑡ሻ ് 𝑊௥௔ௗ

௠ ሺ𝑡ሻ. This is not correct in free space because we have 𝐸ሺ𝑟, 𝑡ሻ ൎ 𝜂଴𝐻ሺ𝑟, 𝑡ሻ for far field 
in free space, from which we can verify that in free space the electric radiative energy has to be equal to the magnetic 
radiative energy. Therefore, either 𝑊ఘሺ𝑡ሻ or  𝑊௃ሺ𝑡ሻ, or even both of them, cannot be treated as reactive energy.  

Integrating (9) over a finite domain 𝑉௔ ⊃ 𝑉௦ and rearranging the terms gives 

׬ ቀ
ଵ

ଶ
𝜌𝜙ቁ𝑑𝒓ଵ௏ೌ

ൌ ׬ ቀ
ଵ

ଶ
𝑫 ∙ 𝑬 ൅

ଵ

ଶ
𝑫 ∙

డ𝑨

డ௧
ቁ 𝑑𝒓ଵ௏ೌ

൅ ∮
ଵ

ଶ
𝜙𝑫 ∙ 𝒏ෝ𝑑𝑆

ௌೌ
  ሺ18ሻ 

where 𝑆௔  is the surface enclosing 𝑉௔  with outward normal unit 𝐧ෝ. In order to investigate the property of 𝑊ఘሺ𝑡ሻ, we 

assume 𝑇 → ൅∞ so that the fields can spread over the whole space. Let 𝑟 → ∞, then we have 𝑉௔ → 𝑉ஶ and 𝑆௔ →
𝑆ஶ.(Note: in this case, the fields on  𝑆௔ are not zero, so the surface integral is not zero. We consider its asymptotic 

behavior when  𝑆௔ → 𝑆ஶ.)  Recalling that lim
௥→ஶ

ሺ𝐃 ⋅ 𝐫ොሻ ∼ 𝑂 ቀ
ଵ

௥మ
ቁ and lim

௥→ஶ
𝜙 ∼ 𝑂 ቀ

ଵ

௥
ቁ, where 𝐫ො is the unit radial vector, the 

surface integral at the RHS of (18) approaches zero when 𝑆௔ → 𝑆ஶ. The energy at the LHS of (18),  i.e.,  𝑊ఘሺ𝑡ሻ, really 

has the meaning of being stored in the space with no energy leaking to the infinity. Therefore, it is at least not improper 
to define 𝑊ఘሺ𝑡ሻ as the electric reactive energy. 

Follow the same procedure, integrating (10) over the domain 𝑉௔ ⊃ 𝑉௦ and rearranging the terms gives 

׬ ቀ
ଵ

ଶ
𝑱 ∙ 𝑨ቁ 𝑑𝒓ଵ௏ೌ

ൌ ׬ ቀ
ଵ

ଶ
𝑩 ∙ 𝑯 െ ଵ

ଶ

డ𝑫

డ௧
∙ 𝑨ቁ 𝑑𝒓ଵ௏ೌ

൅ ∮ ቀ
ଵ

ଶ
𝑯 ൈ 𝑨ቁ ∙ 𝒏ෝ𝑑𝑆ௌೌ

  ሺ19ሻ 

When 𝑇 → ൅∞, we have lim
௥→ஶ

ሺ𝐇 ൈ 𝐀ሻ ∙ 𝐫ො ∼ 𝑂 ቀ
ଵ

௥మ
ቁ, the surface integral in (19) when  𝑆௔ → 𝑆ஶ is usually a bounded but 

nonzero value. The LHS of (19), i.e., 𝑊௃ሺ𝑡ሻ, which is obviously not an energy purely stored in the whole space 𝑉ஶ 
because a part of the energy will eventually leak into the infinity, which is related to the electromagnetic radiation. 
Therefore, it is not proper to define 𝑊௃ሺ𝑡ሻ as the magnetic reactive energy. This has also been verified in our previous 

works [35]-[37]. In the case of the Hertzian dipole, the reactive electric energy defined by 𝑊ఘሺ𝑡ሻ is exactly in agreement 

with the electric energy stored in the capacitor in its equivalent circuit model proposed by Chu [4]. However, the 
magnetic reactive energy calculated with 𝑊௃ሺ𝑡ሻ does not exactly equal to the magnetic energy stored in the equivalent 
inductor.  

Therefore, we conclude that it is proper to treat 𝑊ఘሺ𝑡ሻ as the electric reactive energy, and let the electric radiative 

energy equal to the magnetic radiative energy, 

 𝑊௥௔ௗ
௠ ሺ𝑡ሻ ൌ 𝑊௥௔ௗ

௘ ሺ𝑡ሻ ൌ ଵ

ଶ
𝑊௥௔ௗሺ𝑡ሻ ൌ െ׬ ቀ

ଵ

ଶ
𝑫 ∙ డ𝑨

డ௧
ቁ 𝑑𝒓ଵ௏ಮ

                   ሺ20ሻ 

Consequently, we have 

 𝑊௧௢௧
௘ ሺ𝑡ሻ ൌ 𝑊ఘሺ𝑡ሻ ൅𝑊௥௔ௗ

௘ ሺ𝑡ሻ  ሺ21ሻ 

 𝑊௧௢௧
௠ ሺ𝑡ሻ ൌ 𝑊௃ሺ𝑡ሻ ൅𝑊௥௔ௗ

௠ ሺ𝑡ሻ ൅ ׬
ଵ

ଶ

డ

డ௧
ሺ𝑫 ∙ 𝑨ሻ𝑑𝒓ଵ௏ಮ

                ሺ22ሻ 

It has been demonstrated that the last term in the RHS of (22) is corresponding to the Schott energy in the charged 
particle theory [39][40] by applying the Lienard-Wiechert potentials [41] to a moving charge [42][38]. We denote it as 
the macroscopic Schott energy, 

 𝑊ௌሺ𝑡ሻ ൌ ׬
ଵ

ଶ

డ

డ௧
ሺ𝑫 ∙ 𝑨ሻ𝑑𝒓ଵ௏ಮ

  ሺ23ሻ 

3. The Time Domain Explicit Expressions for the Energies 
With the above logistical reasoning, we proposed the energy separation formulation: 

 𝑊௧௢௧ሺ𝑡ሻ ൌ 𝑊ఘ௃ሺ𝑡ሻ ൅𝑊௥௔ௗሺ𝑡ሻ ൅𝑊ௌሺ𝑡ሻ   ሺ24ሻ 

We want to verify this separation mainly by (i) checking the non-zero period of each energy to reveal their property 
in time domain;(ii) numerical verifying it with Hertzian dipole; (iii) demonstrating the consistency of the time formulation 
and frequency domain formulation. So we derive the explicit expressions in this section, and check the Hertzian dipole 
in the next section. 
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For a pulse radiator in ሾ0,𝑇ሿ, the scalar potential 𝜙ሺ𝐫, 𝑡ሻ and the vector potential 𝐀ሺ𝐫, 𝑡ሻ evaluated at the observation 
point 𝐫 and the time 𝑡 are defined in their usual way, 

 𝜙ሺ𝒓, 𝑡ሻ ൌ ׬
ఘሺ𝒓భ,௧ᇱሻ

ସగఌబோభ௏ೞ
𝑑𝒓ଵ ൌ

ఘ

ସగఌబ
׬

ఘሺ𝒓భሻ

ோభ
∗ 𝛿 ቀ𝑡 െ

ோభ
௖
ቁ௏ೞ
𝑑𝒓ଵ ሺ25ሻ 

 𝑨ሺ𝒓, 𝑡ሻ ൌ 𝜇଴ ׬
𝑱ሺ𝒓భ,௧ᇱሻ

ସగோభ௏ೞ
𝑑𝒓ଵ ൌ

ఓబ
ସగ
׬

𝑱ሺ𝒓భሻ

ோ
∗ 𝛿 ቀ𝑡 െ

ோభ
௖
ቁ 𝑑𝒓ଵோೞ

 ሺ26ሻ 

In the above equations,  𝑡′ ൌ 𝑡 െ 𝑅ଵ 𝑐⁄  is the retarded time, and 𝑐 is the light velocity in vacuum and 𝑅ଵ ൌ |𝐫 െ 𝐫ଵ| is the 
distance between the two positions.  

In order to reveal the property of the macroscopic Schott energy, we are to derive its explicit expression from the 
vector potential and the electric flux density, 

𝑫ሺ𝒓, 𝑡ሻ ൌ െ𝜀଴𝛻𝜙ሺ𝒓, 𝑡ሻ െ 𝜀଴
𝜕
𝜕𝑡
𝑨ሺ𝒓, 𝑡ሻ ൌ െන 𝛻

𝜌ሺ𝒓ଵ, 𝑡ᇱሻ
4𝜋𝑅ଵ௏ೞ

𝑑𝒓ଵ െ 𝜇଴𝜀଴ න
𝜕
𝜕𝑡
𝑱ሺ𝒓ଵ, 𝑡′ሻ

4𝜋𝑅ଵ௏ೞ

𝑑𝒓ଵ 

ൌ െ׬ ׬ 𝜌ሺ𝒓ଵ, 𝑡ଵሻ𝛻𝐺 ቀ𝑡 െ 𝑡ଵ െ
ோభ
௖
ቁ 𝑑𝑡ଵ

ஶ
ିஶ

𝑑𝒓ଵ௏ೞ
െ ଵ

௖మ
׬ ׬ 𝑱ሺ𝒓ଵ, 𝑡ଵሻ𝐺ሶ ቀ𝑡 െ 𝑡ଵ െ

ோభ
௖
ቁ 𝑑𝑡ଵ

ஶ
ିஶ

𝑑𝒓ଵ௏ೞ
        ሺ27ሻ 

where the superscript “˙” means derivative with respect to time. The time domain Green’s function can be expressed 
with the Dirac delta function, 

 𝑮𝟏 ቀ𝒓, 𝒓𝟏; 𝒕 െ 𝑹𝟏
𝒄
ቁ ൌ

𝜹ቀ𝒕ି
𝑹𝟏
𝒄 ቁ

𝟒𝝅𝑹𝟏
  ሺ28ሻ 

Substituting (26) and (27) into (23) yields 

𝑾𝑺ሺ𝒕ሻ ൌ න
𝟏
𝟐
𝝏
𝝏𝒕
ሺ𝑫 ∙ 𝑨ሻ𝒅𝒓

𝑽ಮ

 

ൌ െ𝝁𝟎 ׬ ׬ ׬ ൛ൣ׬ 𝝆ሺ𝒓𝟏, 𝒕𝟏ሻ𝜵𝑮𝟏𝒅𝒕𝟏
ஶ

ିஶ
൅ 𝒄ି𝟐 ׬ 𝑱ሺ𝒓𝟏, 𝒕𝟏ሻ𝑮ሶ 𝟏𝒅𝒕𝟏

ஶ

ିஶ ൧ ∙ ׬ 𝑱ሺ𝒓𝟐, 𝒕𝟐ሻ𝑮𝟐𝒅𝒕𝟐
ஶ

ିஶ
ൟ

𝑽𝒔𝑽𝒔
𝒅𝒓𝟏𝒅𝒓𝟐𝑽ಮ

𝒅𝒓  ሺ29ሻ 

where 𝐺ଵ,ଶ ൌ 𝐺 ቀ𝑡 െ 𝑡ଵ,ଶ െ
ோభ,మ

௖
ቁ  and 𝑅ଵ,ଶ ൌ ห𝐫 െ 𝐫ଵ,ଶห . Note that 𝜌ሺ𝐫ଵ, 𝑡ଵሻ , 𝐉ሺ𝐫ଵ, 𝑡ଵሻ  and 𝜌ሺ𝐫ଶ, 𝑡ଶሻ , 𝐉ሺ𝐫ଶ, 𝑡ଶሻ  stand for the 

sources at ሺ𝐫ଵ, 𝑡ଵሻ and ሺ𝐫ଶ, 𝑡ଶሻ, respectively. They are the same function related to the same radiator.  Now we take the 
first term of 𝑊ௌሺ𝑡ሻ as an example to show the derivation. Rearranging the integration order gives: 

𝑾𝑺
𝝆ሺ𝒕ሻ ൌ െ𝝁𝟎

𝟏

𝟐

𝝏

𝝏𝒕
׬ ׬ ׬ ׬ 𝑱ሺ𝒓𝟏, 𝒕𝟏ሻ𝝆ሺ𝒓𝟐, 𝒕𝟐ሻ ∙ ׬ 𝑮𝟏𝜵𝑮𝟐𝒅𝒓𝒅𝒕𝟐𝑽ಮ

𝒅𝒕𝟏𝒅𝒓𝟐𝒅𝒓𝟏
ஶ

ିஶ

ஶ

ିஶ𝑽𝒔𝑽𝒔
   ሺ30ሻ 

Making use of the identity 𝐺ଵ∇𝐺ଶ ൌ ∇ሺ𝐺ଵ𝐺ଶሻ െ ∇𝐺ଵ𝐺ଶ and 𝐉ଵ ∙ ∇𝐺ଵ ൌ െ𝐉ଵ ∙ ∇ଵ𝐺ଵ ൌ 𝐺ଵ∇ଵ ∙ 𝐉ଵ െ ∇ଵ ∙ ሺ𝐉ଵ𝐺ଵሻ, and noticing that 
the surface integrals at 𝑆ஶ are zeros, we get  

𝑾𝑺
𝝆ሺ𝒕ሻ ൌ െ𝝁𝟎

𝝏

𝝏𝒕
׬ ׬ ׬ ׬ 𝜵𝟏 ∙ 𝑱ሺ𝒓𝟏, 𝒕𝟏ሻ𝝆ሺ𝒓𝟐, 𝒕𝟐ሻ ׬ 𝑮𝟏𝑮𝟐𝒅𝒓𝒅𝒕𝟐𝑽ಮ

𝒅𝒕𝟏𝒅𝒓𝟐𝒅𝒓𝟏
ஶ
ିஶ

ஶ
ିஶ𝑽𝒔𝑽𝒔

       ሺ31ሻ 

It is required to evaluate the following integral associated with two source point 𝐫ଵ and 𝐫ଶ,  

𝑰 ൌ ׬ 𝑮ቀ𝝉𝟏 െ
𝑹𝟏
𝒄
ቁ𝑮 ቀ𝝉𝟐 െ

𝑹𝟐
𝒄
ቁ𝒅𝒓𝑽ಮ

ൌ 𝒄𝟐

𝟏𝟔𝝅𝟐
׬

𝟏

𝑹𝟏𝑹𝟐
𝜹ሺ𝒄𝝉𝟏 െ 𝑹𝟏ሻ𝜹ሺ𝒄𝝉𝟐 െ 𝑹𝟐ሻ𝒅𝒓𝑽ಮ

  ሺ32ሻ 

where 𝜏ଵ,ଶ ൌ 𝑡 െ 𝑡ଵ,ଶ, 𝑅ଵ,ଶ ൌ ห𝐫 െ 𝐫ଵ,ଶห . The value of the integral has been given in the equation (32) in [30]. Here we 
provide an alternative rigorous proof. In the spherical coordinates, choose 𝐫ଵ as the origin and put 𝐫ଶ on +z axis, as 

shown in Fig.2(a). Therefore, we can write 𝐫ଶ ൌ 𝑟ଶଵ𝐳ො,  𝑅ଵ ൌ |𝐫| ൌ 𝑟, and 𝑅ଶ ൌ |𝐫 െ 𝐫ଶ| ൌ ඥ𝑟ଶ െ 2𝑟𝑟ଶଵ cos𝜃 ൅ 𝑟ଶଵ
ଶ . Since 

the integrand is symmetric, we have 

𝑰 ൌ
𝒄𝟐

𝟖𝝅
න න

𝟏
𝒓𝑹𝟐

𝜹ሺ𝒄𝝉𝟏 െ 𝒓ሻ𝜹ሺ𝒄𝝉𝟐 െ 𝑹𝟐ሻ𝒓𝟐 𝒔𝒊𝒏𝜽𝒅𝒓𝒅𝜽
ஶ

𝟎

𝝅

𝟎
ൌ
𝒄𝟐

𝟖𝝅
න

𝒄𝝉𝟏
𝑹𝟐

𝜹ሺ𝒄𝝉𝟐 െ 𝑹𝟐ሻ𝒅 𝒄𝒐𝒔𝜽
𝟏

ି𝟏
 

ൌ െ 𝒄𝟐

𝟖𝝅
׬

𝒄𝝉𝟏
𝑹𝟐
𝜹ሺ𝒄𝝉𝟐 െ 𝑹𝟐ሻ ቀെ

𝑹𝟐
𝒄𝝉𝟏𝒓𝟐𝟏

ቁ 𝒅𝑹𝟐
𝒄𝝉𝟏ା𝒓𝟐𝟏

|𝒄𝝉𝟏ି𝒓𝟐𝟏| ൌ 𝒄𝟐

𝟖𝝅𝒓𝟐𝟏
                ሺ33ሻ 

where 𝑑𝑅ଶ ൌ െሺ𝑐𝜏ଵ𝑟ଶଵ 𝑅ଶ⁄ ሻ𝑑cos𝜃 is used. Apparently, the integration is nonzero only when  𝑐𝜏ଶ falls into the range of 
the integration, i.e.,  |𝑐𝜏ଵ െ 𝑟ଶଵ| ൑ 𝑐𝜏ଶ ൑ 𝑐𝜏ଵ ൅ 𝑟ଶଵ, and satisfy conditions of 0 ൑ 𝜏ଵ,ଶ ൑ 𝑡   and 𝑅ଵ൅𝑅ଶ ൒ 𝑟ଶଵ.   Therefore, 
we have 
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⎩
⎪
⎨

⎪
⎧െ𝝉𝟐 ൑ 𝝉𝟏 െ

𝒓𝟐𝟏
𝒄
൑ 𝝉𝟐  

𝝉𝟐 ൑ 𝝉𝟏 ൅
𝒓𝟐𝟏
𝒄

𝝉𝟏,𝟐 ൑ 𝒕

 𝒄ሺ𝟐𝒕 െ 𝝉𝟏 െ 𝝉𝟐ሻ ൒
𝒓𝟐𝟏
𝒄

  ሺ34ሻ 

which leads to 

⎩
⎨

⎧
𝒓𝟐𝟏
𝒄
െ 𝝉𝟐 ൑ 𝝉𝟏 ൑ 𝝉𝟐 ൅

𝒓𝟐𝟏
𝒄

,  𝝉𝟐 ൑
𝒓𝟐𝟏
𝒄

𝝉𝟐 െ
𝒓𝟐𝟏
𝒄
൑ 𝝉𝟏 ൑ 𝝉𝟐 ൅

𝒓𝟐𝟏
𝒄

,  𝒓𝟐𝟏
𝒄
൑ 𝝉𝟐 ൑ 𝒕 െ 𝒓𝟐𝟏

𝒄

𝝉𝟐 െ
𝒓𝟐𝟏
𝒄
൑ 𝝉𝟏 ൑ 𝟐𝒕 െ 𝝉𝟐 െ

𝒓𝟐𝟏
𝒄

,  𝒕 െ 𝒓𝟐𝟏
𝒄
൑ 𝝉𝟐 ൑ 𝒕

  ሺ35ሻ 

This is the integration range of ሺ𝜏ଵ, 𝜏ଶሻ for nonzero 𝐼. It is the shadowed rectangular area shown in Fig. 2(b). which is 
similar to that in [30] (Fig.2 in [30]). (35) is the same as eq. (33) in [30].  If the sources are zero for 𝑡 ൏ 0, the integration 
area shown in Fig. 2(b) is rigorous. Note that the integration region in [30] can get correct result if we substitute the 
condition that the sources are zero when 𝑡 ൏ 0 in the derivation. 

 
(a)                                                                         (b) 

Fig. 2. Evaluating the integral  𝐼. (a) The coordinate system. (b) Integration region. 

Performing the double integration ሺ׬  𝑑𝑡ଵ𝑑𝑡ଶሻ on the region shown in Fig. 2(b), and dividing the inner integration׬
into three sub-regions gives 

𝑾𝑺
𝝆ሺ𝒕ሻ ൌ െ

𝝁𝟎𝒄𝟐

𝟏𝟔𝝅
𝝏
𝝏𝒕
න න

𝟏
𝒓𝟐𝟏𝑽𝒔𝑽𝒔

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧න 𝝆ቀ𝒓𝟐, 𝒕𝟏 ൅

𝒓𝟐𝟏
𝒄
ቁ𝝆ሺ𝒓𝟏, 𝒕𝟏ሻ𝒅𝒕𝟏

𝒓𝟐𝟏
𝒄

𝟎

൅න ቂ𝝆 ቀ𝒓𝟐, 𝒕𝟏 ൅
𝒓𝟐𝟏
𝒄
ቁ െ 𝝆 ቀ𝒓𝟐, 𝒕𝟏 െ

𝒓𝟐𝟏
𝒄
ቁቃ 𝝆ሺ𝒓𝟏, 𝒕𝟏ሻ𝒅𝒕𝟏

𝒕ି
𝒓𝟐𝟏
𝒄

𝒓𝟐𝟏
𝒄

൅න ቂ𝝆 ቀ𝒓𝟐,𝟐𝒕 െ 𝒕𝟏 െ
𝒓𝟐𝟏
𝒄
ቁ െ 𝝆 ቀ𝒓𝟐, 𝒕𝟏 െ

𝒓𝟐𝟏
𝒄
ቁቃ 𝝆ሺ𝒓𝟏, 𝒕𝟏ሻ𝒅𝒕𝟏

𝒕

𝒕ି
𝒓𝟐𝟏
𝒄 ⎭

⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

𝒅𝒓𝟐𝒅𝒓𝟏 

ൌ െ𝝁𝟎𝒄𝟐

𝟖𝝅
׬ ׬ ׬ ቂ

𝟏

𝒓𝟐𝟏
𝝆ሺ𝒓𝟏, 𝒕𝟏ሻ𝝆ሶ ቀ𝒓𝟐,𝟐𝒕 െ 𝒕𝟏 െ

𝒓𝟐𝟏
𝒄
ቁቃ 𝒅𝒕𝟏

𝒕
𝒕ି

𝒓𝟐𝟏
𝒄

𝒅𝒓𝟐𝒅𝒓𝟏𝑽𝒔𝑽𝒔
      ሺ36ሻ 

Replacing 𝑡ଵ by 𝜏 and evaluating the second term in a similar way we can get (37),  

𝑾𝑺ሺ𝒕ሻ ൌ െ
𝟏

𝟖𝝅𝜺𝟎
׬ ׬

𝟏

𝒓𝟐𝟏
׬ ቂ𝝆ሺ𝒓𝟏, 𝝉ሻ𝝆ሶ ቀ𝒓𝟐,𝟐𝒕 െ 𝝉 െ

𝒓𝟐𝟏
𝒄
ቁ ൅ 𝒄ି𝟐𝑱ሶ ቀ𝒓𝟏,𝟐𝒕 െ 𝝉 െ

𝒓𝟐𝟏
𝒄
ቁ ∙ 𝑱ሺ𝒓𝟐, 𝝉ሻቃ𝒅𝝉𝒅𝒓𝟐𝒅𝒓𝟏

𝒕
𝒕ି

𝒓𝟐𝟏
𝒄𝑽𝒔𝑽𝒔

  ሺ37ሻ 

where 𝑟ଶଵ ൌ |𝐫ଶ െ 𝐫ଵ|. The nonzero range can be determined by noting that the sources exist within ሾ0,𝑇ሿ and at least 
one of the source terms is zero for 𝑡 ൒ 𝑇 ൅ 0.5𝑡௠௔௫,  where 𝑡௠௔௫ ൌ 𝑟ଶଵ,௠௔௫ 𝑐⁄  is the largest travelling time between two 
source points. This means that after the sources have disappeared, although ∂ሺ𝐃 ∙ 𝐀ሻ ∂𝑡⁄   is not zero everywhere in 
the space, its volume integral over the whole space, i.e., 𝑊ௌሺ𝑡ሻ, soon becomes zero.  

Using the same technique, the principal radiative energy can be evaluated with the integration over the source region,  

𝑾𝒓𝒂𝒅
𝒑𝒓𝒊 ሺ𝒕ሻ ൌ 𝟏

𝟖𝝅𝜺𝟎
׬ ׬

𝟏

𝒓𝟐𝟏
׬ ቐ

ቂ𝝆ሶ ሺ𝒓𝟏, 𝝉ሻ𝝆 ቀ𝒓𝟐, 𝝉 െ
𝒓𝟐𝟏
𝒄
ቁ െ 𝝆ሶ ቀ𝒓𝟏, 𝝉 െ

𝒓𝟐𝟏
𝒄
ቁ 𝝆ሺ𝒓𝟐, 𝝉ሻቃ

൅𝒄ି𝟐 ቂ𝑱ሺ𝒓𝟏, 𝝉ሻ𝑱ሶ ቀ𝒓𝟐, 𝝉 െ
𝒓𝟐𝟏
𝒄
ቁ െ 𝑱 ቀ𝒓𝟏, 𝝉 െ

𝒓𝟐𝟏
𝒄
ቁ ∙ 𝑱ሶሺ𝒓𝟐, 𝝉ሻቃ

ቑ
𝒕
𝒓𝟐𝟏
𝒄

𝑽𝒔𝑽𝒔
𝒅𝝉𝒅𝒓𝟐𝒅𝒓𝟏  ሺ38ሻ 

𝐫ଵ 

𝒓ଶ 

𝑟ଶଵ 𝑅ଵ 

𝑅ଶ 
𝐫 

𝑧 

𝜃 

0 𝑡 

𝑡 

𝜏ଵ ൌ 2𝑡 െ 𝜏ଶ െ 𝑟ଶଵ 𝑐⁄  

𝜏ଵ ൌ 𝜏ଶ െ 𝑟ଶଵ 𝑐⁄  

𝜏ଵ ൌ 𝜏ଶ ൅ 𝑟ଶଵ 𝑐⁄  𝜏ଵ 

𝜏ଶ 𝑟ଶଵ 𝑐⁄  

𝜏ଵ ൌ 𝑟ଶଵ 𝑐⁄ െ 𝜏ଶ 
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It can be checked that for a pulse source over ሾ0,𝑇ሿ, 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ ൌ 𝑊௥௔ௗ

௣௥௜ሺ𝑇ሻ for 𝑡 ൒ 𝑇. However, the total radiative energy 
continues to vary in a small time period ሾ𝑇,𝑇 ൅ 0.5𝑡௠௔௫ሿ due to the effect of  𝑊ௌሺ𝑡ሻ.  

Similarly, the explicit expressions for the Coulomb-velocity energy are 

𝑾𝝆ሺ𝒕ሻ ൌ
𝟏

𝟖𝝅𝜺𝟎
׬ ׬

𝟏

𝒓𝟐𝟏
𝝆ሺ𝒓𝟏, 𝒕ሻ𝝆ሺ𝒓𝟐, 𝒕 െ 𝒓𝟐𝟏 𝒄⁄ ሻ

𝑽𝒔
𝒅𝒓𝟏𝑽𝒔

𝒅𝒓𝟐        ሺ39ሻ 

 𝑾𝑱ሺ𝒕ሻ ൌ
𝝁𝟎
𝟖𝝅
׬ ׬

𝟏

𝒓𝟐𝟏
𝑱ሺ𝒓𝟏, 𝒕ሻ ∙ 𝑱ሺ𝒓𝟐, 𝒕 െ 𝒓𝟐𝟏 𝒄⁄ ሻ

𝑽𝒔
𝒅𝒓𝟏𝑽𝒔

𝒅𝒓𝟐        ሺ40ሻ 

4. Hertzian Dipole 
The moment of the dipole is assumed to be 𝑞𝑙cos𝜔𝑡, the scalar potential and the vector potential of which can be 

readily derived from the Hertzian potential Π ൌ ሺ𝑞𝑙 4𝜋𝑟⁄ ሻ cosሺ𝜔𝑡 െ 𝑘𝑟ሻ [36][43],  

 𝑨 ൌ െ𝝎𝝁𝟎𝒒𝒍

𝟒𝝅𝒓
𝒔𝒊𝒏ሺ𝝎𝒕 െ 𝒌𝒓ሻ ൫𝒓ො 𝒄𝒐𝒔𝜽 െ 𝜽෡ 𝒔𝒊𝒏𝜽൯  ሺ41ሻ 

𝝋 ൌ
𝝎𝟐𝝁𝟎𝒒𝒍

𝟒𝝅
𝒄𝒐𝒔𝜽 ቂ

𝟏

𝒌𝟐𝒓𝟐
𝒄𝒐𝒔ሺ𝝎𝒕 െ 𝒌𝒓ሻ െ

𝟏

𝒌𝒓
𝒔𝒊𝒏ሺ𝝎𝒕 െ 𝒌𝒓ሻቃ ሺ42ሻ 

from which the fields are found to be 

𝑬 ൌ 𝒌𝟐𝒒𝒍

𝟒𝝅𝜺𝟎𝒓
ቄ𝒓ො𝟐 𝒄𝒐𝒔𝜽

𝟏

𝒌𝒓
ቂ
𝟏

𝒌𝒓
𝒄𝒐𝒔ሺ𝝎𝒕 െ 𝒌𝒓ሻ െ 𝒔𝒊𝒏ሺ𝝎𝒕 െ 𝒌𝒓ሻቃ ൅ 𝜽෡ 𝒔𝒊𝒏𝜽 ቂቀ

𝟏

𝒌𝟐𝒓𝟐
െ 𝟏ቁ 𝒄𝒐𝒔ሺ𝝎𝒕 െ 𝒌𝒓ሻ െ 𝟏

𝒌𝒓
𝒔𝒊𝒏ሺ𝝎𝒕 െ 𝒌𝒓ሻቃቅ 

 ሺ43ሻ 

𝑯 ൌ െ𝝎𝒌𝒒𝒍

𝟒𝝅𝒓
𝒔𝒊𝒏𝜽 ቂ

𝟏

𝒌𝒓
𝒔𝒊𝒏ሺ𝝎𝒕 െ 𝒌𝒓ሻ ൅ 𝒄𝒐𝒔ሺ𝝎𝒕 െ 𝒌𝒓ሻቃ𝝋ෝ  ሺ44ሻ 

As is known, the Hertzian dipole is a point source and its total reactive energy is infinite. A common strategy is to 
evaluate the energies with integrands containing fields and potentials in the whole space excluding a small sphere with 
radius 𝑎. The results are listed below, 

𝑾𝒓𝒆𝒂𝒄𝒕
𝒆 ሺ𝒕ሻ ൌ ׬ ቀ

𝟏

𝟐
𝑫 ∙ 𝑬 ൅ 𝟏

𝟐
𝑫 ∙ 𝝏𝑨

𝝏𝒕
ቁ 𝒅𝒓𝟏𝑽ಮି𝑽𝒂

ൌ 𝜶𝟎 ቂ
𝟏

𝒌𝟑𝒂𝟑
൅ 𝟏

𝒌𝒂
൅ ቀ

𝟏

𝒌𝟑𝒂𝟑
െ 𝟏

𝒌𝒂
ቁ 𝒄𝒐𝒔 𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻ െ 𝟐

𝒌𝟐𝒂𝟐
𝒔𝒊𝒏𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻቃ  ሺ45ሻ 

𝑾𝒓𝒆𝒂𝒄𝒕
𝒎 ሺ𝒕ሻ ൌ ׬ ቀ

𝟏

𝟐
𝑩 ∙ 𝑯 ൅ 𝟏

𝟐
𝑫 ∙ 𝝏𝑨

𝝏𝒕
ቁ 𝒅𝒓𝟏𝑽ಮି𝑽𝒂

ൌ 𝟐𝜶𝟎
𝒌𝒂
𝒔𝒊𝒏𝟐ሺ𝝎𝒕 െ 𝒌𝒂ሻ      ሺ46ሻ 

where 𝛼଴ ൌ ሺ𝜔𝑞𝑙ሻଶ𝜇଴𝑘 ሺ24𝜋ሻ⁄ . The principal radiative power evaluated at a spherical observation surface is  

 𝑷𝒓𝒂𝒅
𝒑𝒓𝒊 ሺ𝒕ሻ ൌ ∮ 𝑺𝑺𝒓𝒂𝒅 ∙ 𝒏ෝ𝒅𝑺𝑺𝒂

ൌ 𝟐𝝎𝜶𝟎  ሺ47ሻ 

It is a constant value independent of the radius of the sphere, clearly indicating that the total principal radiative power 

associated with 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ  passing through any concentric spherical surface is identical. 

The Poynting power flux on the spherical surface 𝑆௔ is calculated to be 

𝑷𝒑𝒗ሺ𝒕ሻ ൌ ∮ 𝑺 ∙ 𝒏ෝ𝒅𝑺
𝑺𝒂

ൌ 𝟐𝝎𝜶𝟎ሾ𝟏 ൅ 𝒄𝒐𝒔𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻሿ ൅ 𝟐𝝎𝜶𝟎 ቂቀ
𝟐

𝒌𝒂
െ 𝟏

𝒌𝟑𝒂𝟑
ቁ 𝒔𝒊𝒏𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻ െ 𝟐

𝒌𝟐𝒂𝟐
𝒄𝒐𝒔𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻቃ 

 ሺ48ሻ 

which decreases with the radius of the surface due to the effect of the reactive energy. As expected, the time average 

of 𝑃௣௩ሺ𝑡ሻ equals to that of 𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ.  

 Since the Hertzian dipole is a point source, its fields propagate radially and cross all concentric spherical observation 
surfaces with light velocity. Therefore, the radiative energy per unit time near the spherical surface 𝑆௔  can be 
considered as the real radiative power crossing 𝑆௔,  

𝑷𝒓𝒂𝒅
𝒓𝒆𝒂𝒍ሺ𝒕ሻ𝒅𝒕 ൌ ׬ ׬ ቀെ𝑫 ∙ 𝝏𝑨

𝝏𝒕
ቁ

𝒂ା𝒄𝒅𝒕
𝒂𝑺

𝒅𝒓𝒅𝑺 ൌ 𝒄𝒅𝒕׬ ቀെ𝑫 ∙ 𝝏𝑨
𝝏𝒕
ቁ 𝒅𝑺𝑺𝒂

  ሺ49ሻ 

from which the real radiative power is found exactly to be 

 𝑷𝒓𝒂𝒅
𝒓𝒆𝒂𝒍ሺ𝒕ሻ ൌ 𝟐𝝎𝜶𝟎ሾ𝟏 ൅ 𝒄𝒐𝒔𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻሿ  ሺ50ሻ 

the amplitude of which is not dependent on the radius of the observation surface. It is readily to recognize from (48) 
that it is the first term in the Poynting power flux 𝑃௣௩ሺ𝑡ሻ. The other terms of 𝑃௣௩ሺ𝑡ሻ in (48) compose the pseudo power 

flow, which decreases with the distance to the dipole.  

𝑷𝒓𝒂𝒅
𝒑𝒔𝒆𝒖𝒅𝒐ሺ𝒕ሻ ൌ 𝟐𝝎𝜶𝟎 ቂቀ

𝟐

𝒌𝒂
െ 𝟏

𝒌𝟑𝒂𝟑
ቁ 𝒔𝒊𝒏𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻ െ 𝟐

𝒌𝟐𝒂𝟐
𝒄𝒐𝒔 𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻቃ     ሺ51ሻ 
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The time averaged energies are listed below for readers’ reference,  

 ቐ
ሺ𝑾𝒎ሻ𝒂𝒗 ൌ 𝜶𝟎 ቀ

𝟏

𝒌𝒂
ቁ

ሺ𝑾𝒆ሻ𝒂𝒗 ൌ 𝜶𝟎 ቀ
𝟏

𝒌𝟑𝒂𝟑
൅ 𝟏

𝒌𝒂
ቁ

  ሺ52ሻ 

The Q factor of the dipole is then calculated to be 

 𝑸 ൌ 𝟐𝝎ሺ𝑾𝒆ሻ𝒂𝒗
ሺ𝑷𝒓𝒂𝒅ሻ𝒂𝒗

ൌ 𝟏

𝒌𝟑𝒂𝟑
൅ 𝟏

𝒌𝒂
  ሺ53ሻ 

which is exactly in agreement with the result shown in [3].  
The well-established equivalent circuit model proposed by Chu [4] for Hertzian dipole is shown in Fig.3(b). Assume 

that the current in the radiation resistor at the interface of 𝑟 ൌ 𝑎 is 𝑖ோ ൌ 𝐼଴ cosሺ𝜔𝑡 െ 𝑘𝑎ሻ. The energies stored in the 
capacitor and the inductor can be derived to be 

ቐ
𝑾𝑪ሺ𝒕ሻ ൌ

𝑰𝟎
𝟐

𝟒𝝎
ቂ
𝟏

𝒌𝒂
൅ 𝟏

𝒌𝟑𝒂𝟑
൅ ቀ

𝟏

𝒌𝟑𝒂𝟑
െ 𝟏

𝒌𝒂
ቁ 𝒄𝒐𝒔 𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻ െ 𝟐

ሺ𝒌𝒂ሻ𝟐
𝒔𝒊𝒏𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻቃ

𝑾𝑳ሺ𝒕ሻ ൌ
𝑰𝟎
𝟐

𝟐𝝎
ቀ
𝟏

𝒌𝒂
𝒔𝒊𝒏𝟐ሺ𝝎𝒕 െ 𝒌𝒂ሻቁ

  ሺ54ሻ 

 
(a)                                                            (b) 

Fig. 3.  Hertzian dipole. (a) Coordinate system. (b) Equivalent circuit model. 

If we choose 𝐼଴ଶ ൌ 4𝜔𝛼଴, it can be readily verified that 𝑊஼ሺ𝑡ሻ ൌ 𝑊௘ሺ𝑡ሻ and  𝑊௅ሺ𝑡ሻ ൌ 𝑊௠ሺ𝑡ሻ .  

The integration regions for 𝑊௥௔ௗሺ𝑡ሻ, 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ and 𝑊ௌሺ𝑡ሻ are all modified in a similar way. They are found to be 

𝑾𝒓𝒂𝒅ሺ𝒕ሻ ൌ െ׬ 𝑫 ∙
𝝏𝑨

𝝏𝒕𝑽ಮି𝑽𝒂
𝒅𝑽 ൌ 𝟐𝒌𝜶𝟎𝒍𝒊𝒎𝒓→ஶ

ሺ𝒓 െ 𝒂ሻ ൅ 𝜶𝟎 ቂ𝒔𝒊𝒏𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻ െ 𝒍𝒊𝒎
𝒓→ஶ

𝒔𝒊𝒏𝟐 ሺ𝝎𝒕 െ 𝒌𝒓ሻቃ  ሺ55ሻ 

                  𝑾𝒓𝒂𝒅
𝒑𝒓𝒊 ሺ𝒕ሻ ൌ ׬

𝟏

𝟐
ቀ
𝝏𝑫

𝝏𝒕
∙ 𝑨 െ 𝑫 ∙ 𝝏𝑨

𝝏𝒕
ቁ𝑽ಮି𝑽𝒂
𝒅𝑽 ൌ 𝟐𝜶𝟎𝒌𝒍𝒊𝒎𝒓→ஶ

ሺ𝒓 െ 𝒂ሻ   ሺ56ሻ 

𝑾𝑺ሺ𝒕ሻ ൌ ׬
𝝏

𝝏𝒕
ቀ
𝟏

𝟐
𝑫 ∙ 𝑨ቁ𝒅𝑽𝑽ಮି𝑽𝒂

ൌ െ𝜶𝟎 ቂ𝒔𝒊𝒏𝟐 ሺ𝝎𝒕 െ 𝒌𝒂ሻ െ 𝒍𝒊𝒎
𝒓→ஶ

𝒔𝒊𝒏𝟐 ሺ𝝎𝒕 െ 𝒌𝒓ሻቃ  ሺ57ሻ 

With the wave travels to infinity, the principal radiative energy 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ monotonically increases with the radius, 

revealing that the radiative rate is always positive. The macroscopic Schott energy 𝑊ௌሺ𝑡ሻ oscillates in the propagation 
with a zero average value. Its amplitude remains constant in this case. 

We want to remind readers that no other numerical methods can provide such an accurate verification of the energy 
relationship in Hertzian dipole.  

 
5. Explanation for Negative Energies 

In the article, the surface current on a ring described by 𝐉௦ሺ𝐫, 𝑡ሻ ൌ 𝐼ሺ𝑡ሻ𝜑ො  [A/m] is a solenoidal current with zero charge 

density,  𝐼ሺ𝑡ሻ ൌ 𝑒ିఊ
మ

sin𝜔 𝑡  is a modulated Gaussian pulse. The reactive energy includes the contribution from the 
current alone, i.e.,  𝑊௃. It oscillates with the source and admits negative values periodically, as shown in Fig. 4. Negative  
𝑊௃  is acceptable because the reactive energy is dependent on the potentials, which are values relative to their 
reference zero points. When the current varies and changes its direction periodically, the retarded vector potential in 
the source region lags behind and may point in direction opposite to that of the current, causing negative values of  𝑊௃. 
A source itself can radiate energy. It can also interact with fields radiated by other sources and absorb part of the 
energies carried by the fields. Consider a part of the loop current. On the one hand, it will radiate energy to the space, 
which will propagate to the other part of the loop current and interact with them; on the other hand, it will interact with 
fields radiated by the other part of the loop current some time earlier and absorb part of the energy of the fields. In the 
article, it is considered that the source absorbs more energy than that it radiates when its 𝑊௃ is negative.  

𝐿 ൌ 𝑎 𝑐⁄  

𝐶 ൌ 𝑎 𝑐⁄  
𝑅 ൌ 1 

𝑧 

𝜃 

𝑞𝑙cos𝜔𝑡 

𝐫 
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Fig.4. The energy of the loop current evaluated in the source region.  

Although we prefer the explanation that the negative energy is caused by energy absorption, we also give here 
another possible explanation. Consider a loop current with radius 𝑏 and current 𝐼ሺ𝑡ሻ𝜑ො , as shown in Fig. 5(a)., the 
magnetic flux generated by the loop current is  

𝜱ሺ𝒕ሻ ൌ ׬ 𝑩ሺ𝒓, 𝒕ሻ ∙ 𝒏ෝ𝒅𝑺
𝑺

ൌ ∮ 𝑨ሺ𝒓, 𝒕ሻ
𝑪

∙ 𝒃𝝋ෝ𝟏𝒅𝝋𝟏 ൌ
𝝁𝟎𝒃𝟐

𝟒𝝅
∮ ∮

𝟏

𝒓𝟐𝟏
𝑰 ቀ𝒕 െ

𝒓𝟐𝟏
𝒄
ቁ ሺ𝝋ෝ𝟏 ∙ 𝝋ෝ𝟐ሻ𝒅𝝋𝟐𝒅𝝋𝟏𝑪𝑪

  ሺ58ሻ 

where 𝑟ଶଵ ൌ 2𝑏 sin൫0.5ሺ𝜑ଵ െ 𝜑ଶሻ൯ is the distance between two points on the loop. In circuit theory, the associated 
inductance associated with the loop current is defined as 𝐿 ൌ Φ 𝐼⁄ , and the energy stored in the inductor is expressed 
by 

 𝑾𝑳 ൌ
𝟏

𝟐
𝑳𝑰𝟐  ሺ59ሻ 

At low frequencies, the magnetic flux is always positive, as most of the magnetic fields inside the loop can catch up 
with the change of the current and pass through the curvature 𝑆 in the same direction, as shown in Fig. 5(a). However, 
at high frequencies, because of the retardation of the fields, some of the magnetic field inside the loop may cross the 
curvature 𝑆 in opposite direction, as shown in Fig.5(b). The total magnetic flux through the curvature 𝑆 may become 
negative if we calculate it with (58), therefore, we will have a negative inductance. According to (59), the magnetic 
energy becomes negative.  

 

(a)                                                                           (b)                                                                    (c) 

Fig. 5. Loop current and disk charge sources. (a) Magnetic flux of a loop current corresponding to positive inductance at low frequencies. (b) 
Corresponding to a negative inductance at high frequencies. (c) Charge density on a disk plate. 

 For readers’ reference, we have also confirmed that a harmonic charge density, e.g.,  𝜌ሺ𝑡ሻ ൌ 𝑒ିఊ
మ
sin𝜔𝑡 in Fig. 5(c), 

uniformly distributed on a disk plate sometimes may have negative Coulomb energy 𝑊ఘሺ𝑡ሻ.  
 

6. Numerical Technique in MOT 
For a PEC antenna (we consider PEC plate with zero thickness), we calculate the energies in two steps. Firstly, we 

calculate the surface currents by solving the surface electric field integral equation (EFIE) with marching-on in time 
scheme (MOT) [44][45]. Secondly, based on equivalence principle, we assume that the surface currents are in free 
space, and calculate the associated energies with the expressions we have proposed.  

 

𝐧ෝ 𝐁ሺ𝑡ሻ 

𝐼ሺ𝒕ሻ 

𝑆  

𝒏ෝ 𝑩ሺ𝒕ሻ 

𝐼ሺ𝒕ሻ 

𝑆 
𝜌ሺ𝑡ሻ ൌ 𝑒ିఊ

మ
𝑠𝑖𝑛𝜔𝑡 
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(a)                                                                                                  (b) 

Fig. 6.  Antenna radiation problem. (a) PEC loop antenna with Delta-gap voltage feeding, triangularly-meshed. (b) Equivalent problem with its 
surface currents in free space. 

The surface current on the PEC radiator is subject to the time domain electric field integral equation (TD-EFIE): 

 ቂ𝝏𝑨ሺ𝒓,𝒕ሻ

𝝏𝒕
൅ 𝜵𝝓ሺ𝒓, 𝒕ሻቃ

𝒕𝒂𝒏
ൌ 𝑬𝒇𝒆𝒆𝒅ሺ𝒓, 𝒕ሻห

𝒕𝒂𝒏
  ሺ60ሻ 

We can expand the surface current with 𝑁 RWG bases 𝐟௡ሺ𝐫ሻ 

 𝑱𝒔ሺ𝒓, 𝒕ሻ ൌ ∑ 𝑰𝒏
𝑵
𝒏ୀ𝟏 ሺ𝒕ሻ𝒇𝒏ሺ𝒓ሻ  ሺ61ሻ 

and the surface charge density with  

𝝆𝒔ሺ𝒓, 𝒕ሻ ൌ െ∑ ׬ 𝑰𝒏ሺ𝝃ሻ𝒅𝝃𝜵 ∙ 𝒇𝒏ሺ𝒓ሻ
𝒕
ିஶ

𝑵
𝒏ୀ𝟏 ൌ ∑ 𝜵 ∙ 𝒇𝒏ሺ𝒓ሻ𝒒𝒏ሺ𝒕ሻ

𝑵
𝒏ୀ𝟏   ሺ62ሻ 

As shown in Fig. 7., The RWG basis function is defined as [46] 

𝒇𝒏ሺ𝒓ሻ ൌ ൜
𝑪𝒏ାሺ𝒓 െ 𝒓𝒏ାሻ, 𝒓 ∈ 𝑻𝒏ା

െ𝑪𝒏ିሺ𝒓 െ 𝒓𝒏ିሻ,𝒓 ∈ 𝑻𝒏ି
,𝑪𝒏േ ൌ

𝒍𝒏
𝟐𝑨𝒏

േ ,𝜵𝒔 ∙ 𝒇𝒏ሺ𝒓ሻ ൌ 𝟐𝑪𝒏  ሺ63ሻ 

 
Fig. 7. RWG basis function 

Rewrite the potentials as convolutions in time, 

𝑨ሺ𝒓, 𝒕ሻ ൌ 𝝁𝟎
𝟒𝝅
׬

𝑱𝒔ሺ𝒓𝟏ሻ

𝑹𝟏
∗ 𝜹 ቀ𝒕 െ

𝑹𝟏
𝒄
ቁ𝒅𝒓𝟏𝑺

,       𝝓ሺ𝒓, 𝒕ሻ ൌ 𝟏

𝟒𝝅𝜺𝟎
׬

𝝆𝒔ሺ𝒓𝟏ሻ

𝑹𝟏
∗ 𝜹 ቀ𝒕 െ

𝑹𝟏
𝒄
ቁ𝒅𝒓𝟏𝑺

        ሺ64ሻ 

Note that 

 𝜵
𝜹ቀ𝒕ି

𝑹𝟏
𝒄 ቁ

𝑹𝟏
ൌ ቆെ

𝜹ቀ𝒕ି
𝑹𝟏
𝒄 ቁ

𝑹𝟏
𝟐 െ

𝜹ሶ ቀ𝒕ି
𝑹𝟏
𝒄 ቁ

𝒄𝑹𝟏
ቇ𝒂ෝ𝑹  ሺ65ሻ 

 𝑨ሶ ሺ𝒓, 𝒕ሻ ൌ ∑ 𝑰ሶ𝒏ሺ𝒕ሻ ∗
𝝁𝟎
𝟒𝝅
׬ 𝒇𝒏ሺ𝒓𝟏ሻ

𝜹ቀ𝒕ି
𝑹𝟏
𝒄 ቁ

𝑹𝟏
𝒅𝒓𝟏𝑺𝒏

𝑵𝑨
𝒏ୀ𝟏   ሺ66ሻ 

Then the electric field can then be expressed by 

𝑬ሺ𝒓, 𝒕ሻ ൌ ෍𝒒𝒏ሺ𝒕ሻ ∗
𝑪𝒏
𝟐𝝅𝜺𝟎

𝟏
𝒄𝟐𝒕𝟐

ሾሺ𝒓 െ 𝒓𝒐ሻ𝜞𝒏ሺ𝒓, 𝒕ሻ െ 𝜞𝒏ሺ𝒓, 𝒕ሻሿ
𝑵

𝒏ୀ𝟏

 

൅∑ 𝒒ሶ 𝒏ሺ𝒕ሻ ∗
𝑪𝒏
𝟐𝝅𝜺𝟎

𝟏

𝒄𝟐𝒕
ሾሺ𝒓 െ 𝒓𝒐ሻ𝜞𝒏ሺ𝒓, 𝒕ሻ െ 𝜞𝒏ሺ𝒓, 𝒕ሻሿ𝑵

𝒏ୀ𝟏 ൅ ∑ 𝑰ሶ𝒏ሺ𝒕ሻ ∗
𝑪𝒏𝝁𝟎
𝟒𝝅

ሾሺ𝒓𝒏 െ 𝒓𝒐ሻ𝜞𝒏ሺ𝒓, 𝒕ሻ െ 𝜞𝒏ሺ𝒓, 𝒕ሻሿ𝑵
𝒏ୀ𝟏   ሺ67ሻ 

where the two functions are defined as 

feed 

𝐉ௌ 

𝜇଴, 𝜀଴ 
𝜇଴, 𝜀଴ 

𝐫 
𝒓 

𝑙௡ 

𝒓௡ା 
𝐫𝒏ି 

𝑇𝒏ା 𝑇௡ି 
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⎩
⎨

⎧𝜞𝒏ሺ𝒓, 𝒕ሻ ൌ ׬
𝜹ቀ𝒕ି

𝑹𝟏
𝒄 ቁ

𝑹𝟏
𝒅𝒓𝟏𝑺𝒏

𝜞𝒏ሺ𝒓, 𝒕ሻ ൌ ׬ ሺ𝒓 െ 𝒓𝒐ሻ
𝜹ቀ𝒕ି

𝑹𝟏
𝒄 ቁ

𝑹𝟏
𝒅𝒓𝟏𝑺𝒏

  ሺ68ሻ 

They can be evaluated analytically with formulae in [44]. The TD-EFIE (60) is transformed to a matrix equation, 

 𝑸𝑨ሺ𝒕ሻ ∗ 𝒒ሺ𝒕ሻ ൅ 𝒕𝑸𝑨ሺ𝒕ሻ ∗ 𝒒ሶ ሺ𝒕ሻ ൅ 𝑰𝑨ሺ𝒕ሻ ∗ 𝑰ሶሺ𝒕ሻ ൌ 𝒆𝒊𝒏ሺ𝒕ሻ          ሺ69ሻ 

where 𝒒ሺ𝑡ሻ ൌ ሾ𝑞ଵሺ𝑡ሻ,𝑞ଶሺ𝑡ሻ,⋯ , 𝑞ேሺ𝑡ሻሿ௧ , 𝐈ሺ𝑡ሻ ൌ ሾ𝐼ଵሺ𝑡ሻ, 𝐼ଶሺ𝑡ሻ,⋯ , 𝐼ேሺ𝑡ሻሿ௧, 𝐞௜௡ሺ𝑡ሻ ൌ ൣ𝑒ଵ
௜௡ሺ𝑡ሻ, 𝑒ଶ

௜௡ሺ𝑡ሻ,⋯ , 𝑒ே
௜௡ሺ𝑡ሻ൧

௧
, the upper script 

“t” means transpose. The entries of the coefficient matrices are 

𝑸𝒎𝒏
𝑨 ሺ𝒕ሻ ൌ െ

𝟏
𝟒𝝅𝜺𝟎

න 𝜵𝒔 ∙ 𝒇𝒎ሺ𝒓ሻන 𝜵𝟏𝒔 ∙ 𝒇𝒏ሺ𝒓𝟏ሻ
𝜹 ቀ𝒕 െ

𝑹𝟏
𝒄 ቁ

𝑹𝟏
𝒅𝒓𝟏

𝑺𝒏𝑺𝒎

𝒅𝒓 

𝑰𝑨ሺ𝒕ሻ ൌ െ
𝝁𝟎
𝟒𝝅

න 𝒇𝒎ሺ𝒓ሻ ∙ න 𝒇𝒏ሺ𝒓𝟏ሻ
𝜹 ቀ𝒕 െ

𝑹𝟏
𝒄 ቁ

𝑹𝟏
𝒅𝒓𝟏

𝑺𝒏𝑺𝒎

𝒅𝒓 

For PEC antennas with simple structures, we can sample 𝐼௡ሺ𝑡ሻ  and 𝑞௡ሺ𝑡ሻ at discrete time 𝑝Δ𝑡 or expanding them 
with proper temporal basis functions, and solve the TD-EFIE with the marching-on in time method, i.e., calculate them 
step by step in time domain, we can obtain 𝐼௡ሺ𝑡ሻ and 𝑞௡ሺ𝑡ሻ. If necessary, we may tune the time step or adopt other 
techniques to guarantee late time stability.   

Using the obtained source data, the radiative energy and the macroscopic Schott energy can be approximately 
calculated with 

 𝑾𝒓𝒂𝒅
𝒑𝒓𝒊 ሺ𝒕ሻ ൎ ∑ ∑ ൣ𝑪𝒎𝒏

𝝆 ሺ𝒕ሻ𝑰𝒎𝒏
𝝆 ൅ 𝑪𝒎𝒏

𝑱 ሺ𝒕ሻ𝑰𝒎𝒏
𝑱 ൧𝑵

𝒏ୀ𝟏
𝑵
𝒎ୀ𝟏   ሺ70ሻ 

 𝑾𝑺ሺ𝒕ሻ ൎ ∑ ∑ ൣ𝑫𝒎𝒏
𝝆 ሺ𝒕ሻ𝑰𝒎𝒏

𝝆 ൅ 𝑫𝒎𝒏
𝑱 ሺ𝒕ሻ𝑰𝒎𝒏

𝑱 ൧𝑵
𝒏ୀ𝟏

𝑵
𝒎ୀ𝟏   ሺ71ሻ 

where 

 ቐ
𝑰𝒎𝒏
𝝆 ൌ 𝟏

𝟖𝝅𝜺𝟎
׬ ׬ 𝜵𝒔 ∙ 𝒇𝒎ሺ𝒓𝟏ሻ𝜵𝒔 ∙ 𝒇𝒏ሺ𝒓𝟐ሻ𝒅𝒓𝟐𝒅𝒓𝟏𝑽𝒔𝑽𝒔

𝑰𝒎𝒏
𝑱 ൌ 𝟏

𝟖𝝅𝜺𝟎
׬ ׬ 𝒇𝒎ሺ𝒓𝟏ሻ ∙ 𝒇𝒏ሺ𝒓𝟐ሻ𝑽𝒔𝑽𝒔

𝒅𝒓𝟐𝒅𝒓𝟏
  ሺ72ሻ 

ቐ
𝑪𝒎𝒏
𝝆 ሺ𝒕ሻ ൌ 𝟏

𝒓𝒎𝒏
𝒄 ׬ ሾ𝑰𝒎ሺ𝝉𝒅ሻ𝒒𝒏ሺ𝝉ሻ െ 𝑰𝒎ሺ𝝉ሻ𝒒𝒏ሺ𝝉𝒅ሻሿ

𝒕
𝒓𝒎𝒏
𝒄 𝒄⁄

𝒅𝝉

𝑪𝒎𝒏
𝑱 ሺ𝒕ሻ ൌ 𝟏

𝒄𝟐𝒓𝒎𝒏
𝒄 ׬ ൣ𝑰𝒎ሺ𝝉ሻ𝑰ሶ𝒏ሺ𝝉𝒅ሻ െ 𝑰𝒎ሺ𝝉𝒅ሻ𝑰ሶ𝒏ሺ𝝉ሻ൧

𝒕

𝒓𝒎𝒏
𝒄 𝒄⁄

𝒅𝝉
       ሺ73ሻ 

 ቐ
𝑫𝒎𝒏
𝝆 ሺ𝒕ሻ ൌ 𝟏

𝒓𝒎𝒏
𝒄 ׬ 𝒒𝒎ሺ𝝉ሻ𝑰𝒏ሺ𝟐𝒕 െ 𝟐𝝉 ൅ 𝝉𝒅ሻ

𝒕
𝒕ି𝒓𝒎𝒏

𝒄 𝒄⁄
𝒅𝝉

𝑫𝒎𝒏
𝑱 ሺ𝒕ሻ ൌ െ

𝟏

𝒄𝟐𝒓𝒎𝒏
𝒄 ׬ 𝑰ሶ𝒎ሺ𝟐𝒕 െ 𝟐𝝉 ൅ 𝝉𝒅ሻ𝑰𝒏ሺ𝝉ሻ

𝒕

𝒕ି𝒓𝒎𝒏
𝒄 𝒄⁄

𝒅𝝉
         ሺ74ሻ 

𝑟௠௡௖  is the distance between the center of the triangles in the two bases, and 𝜏ௗ ൌ 𝜏 െ 𝑟௠௡௖ 𝑐⁄ . The symbol “˙” means 
temporal derivative. For 𝑟௠௡௖ ൌ 0, (73) and (74) can be evaluated using the L’Hospital’s rule. For example,  

𝒍𝒊𝒎
𝒓𝒎𝒏
𝒄 →𝟎

𝑫𝒎𝒏
𝝆 ሺ𝒕ሻ ൌ 𝝏

𝝏𝒓𝒎𝒏
𝒄 ׬ 𝒒𝒎ሺ𝝉ሻ𝑰𝒏ሺ𝟐𝒕 െ 𝟐𝝉 ൅ 𝝉𝒅ሻ

𝒕
𝒕ି𝒓𝒎𝒏

𝒄 𝒄⁄
𝒅𝝉 ൌ 𝟏

𝒄
ሾ𝒒𝒎ሺ𝒕ሻ𝑰𝒏ሺ𝒕ሻሿ       ሺ75ሻ 

Otherwise, the integrations have to be evaluated numerically with the values of 𝐼௡ሺ𝑡ሻ  and 𝑞௡ሺ𝑡ሻ obtained with the MOT.  
Note that: 
 Some of the coefficients have already been evaluated in the MOT process and can be reused. Modulated 

Gaussian pulse is often used for wideband analysis. 
 The integration interval of the innermost integral is dependent on the distance between two points, and may be 

much smaller than the time step and should be handled carefully. 
 

As has pointed previously, we only consider the situation in vacuum in this article. The issues like the effect of media 
and bulk metals, input property at the feeding port, will be presented in future work. 
 

7. About Mutual Coupling 
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We consider that electromagnetic mutual coupling issue is basically the same issue as the electromagnetic radiation, 
and the energies involved are the same, as we have discussed in [37]. However, because of space limitation of the 
article, we do not include this part of content in the article.  
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