
 

1  

 

Explicit Definitions for the Electromagnetic 
Energies in Electromagnetic Radiation 

 

G. B. Xiao, Senior Member, IEEE 
 

Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240 China 

 
 
 

Abstract: The total electromagnetic energy of a pulse radiator in free space is separated 
into a Coulomb-velocity energy, a radiative energy, and a macroscopic Schott energy. The 
Coulomb-velocity energy becomes zero as soon as its sources have disappeared. The 
radiative energy leaves the radiator and propagates to the surrounding space. The 
macroscopic Schott energy continues to exist for a short time after the sources have 
disappeared. The Poynting vector describes the total power flux density related to the total 
electromagnetic energy and should include a real radiative power flux by the propagation 
of the radiative energy and a pseudo power flux caused by the fluctuation of the reactive 
energy. All energies are defined with explicit expressions in which the vector potential plays 
an essential role. The time domain formulation and the frequency domain formulation of 
the theory are in consistent with each other. The theory is verified with Hertzian dipole. 
Numerical examples demonstrate that the theory may provide insightful interpretation for 
electromagnetic radiation problems. 

 

Index Terms: Reactive energy, Schott energy, radiative energy, electromagnetic coupling, 
Poynting vector. 

 
 
 

1. Introduction 
The electromagnetic radiation problems have been intensively investigated for more than a 
hundred years. There are still no widely accepted explicit expressions for the macroscopic 
electromagnetic reactive energy and the radiative energy of a radiator [1]-[15]. In classical charged 
particle theory, the fields associated with charged particles can be divided into Coulomb fields, 
velocity fields and radiative fields [16], [17]. The Coulomb fields and velocity fields carry energies 
in the space, and are jointly referred to as Coulomb-velocity energy in this paper. The radiative 
fields are generated by acceleration of charged particles, emitting radiative energy to the 
surrounding space. In free space, the Coulomb-velocity energies are considered to be attached to 
their charged particles. They become zero when the charged particles have disappeared. On the 
contrary, after being radiated by the charged particles, the radiative energies depart from the 
sources and keep propagating to the remote infinity. They continue to exist after their generation 
sources have disappeared and can couple with other sources they encounter in their journey. 
Schott energy was first introduced in 1912 by Schott [18]-[20]. It is reversible and is considered to 
be responsible for energy exchange between the Coulomb-velocity energies and the radiative 
energies. Although it is natural to consider that the reactive energy in macroscopic electro- 
magnetics is similar to the Coulomb-velocity energy and the Schott energy, no successful attempt 
has been found in published papers to handle the reactive energy in this manner.  
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For a harmonic field over the time interval ሺെ∞ ൏ 𝑡 ൏ ∞ሻ, the radiative energy expands to the 
whole space and the total radiative energy is infinitely large [14], so is the total electromagnetic 
energy. As there is no explicit for the reactive energy, it is conventionally evaluated by subtracting 
an additional term associated with the radiative power from the total electromagnetic energy 
density. However, the additional term is obtained with some approximation and it is not easy to 
give a general expression for it because the propagation patterns are quite different for different 
radiators [1], [5]. 

A better strategy is to examine a pulse radiator because its radiative energy and its total 
electromagnetic energy are all finite. Consider in free space a radiator with charge density  𝜌ሺ𝑟ଵ, 𝑡ሻ 
and current density 𝐉ሺ𝐫ଵ, 𝑡ሻ, where 𝐫ଵ ∈ 𝑉௦, and 𝑡 ∈ ሾ0,𝑇ሿ.  The total electric energy and the total 
magnetic energy can be written as 
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where 𝐄 and 𝐇 are the electromagnetic fields, 𝐃 and 𝐁 are the flux densities. The scalar potential 
∅ and the vector potential 𝐀 are subject to the Lorentz Gauge and their reference zero points are 
put at the infinity. Under these conditions, [21] has shown that the potentials are Gauge-invariant. 
Note that in deriving (1) and (2), the volume integrations with respect to the divergence terms have 
been transformed to surface integrals, which are zeros because we can always put the integration 
surface in the region that the fields of the pulse radiator cannot reach.   

Denote 

 𝑊ఘሺ𝑡ሻ ൌ ׬
ଵ
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𝜌ሺ𝐫ଵ, 𝑡ሻ𝜙ሺ𝐫ଵ, 𝑡ሻ

௏ೞ
𝑑𝐫ଵ  ሺ3ሻ 

 𝑊௃ሺ𝑡ሻ ൌ ׬
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𝑑𝐫ଵ  ሺ4ሻ 

Hereafter, 𝑊ఘ௃ ൌ 𝑊ఘ ൅𝑊௃ is referred to as the Coulomb-velocity energy. As can be checked clearly 

from (3) and (4), the Coulomb-velocity energy appears and disappears simultaneously with its 
sources. It seems natural to choose the Coulomb-velocity energy alone as the reactive energy. 
However, we will see that this choice is not proper. Since the total electric (magnetic) energy 
consists of the electric (magnetic) radiative energy and the electric (magnetic) reactive energy. If 
we take the Coulomb-velocity energy as the reactive energy, then we have to define the second 
integral at the RHS of (1), i.e., ׬ ሺെ0.5𝐃 ∙ ∂𝐀 ∂𝑡⁄ ሻ𝑑𝐫ଵ௏∞

, as the electric radiative energy and that 

in (2), i.e., ׬ ሺ0.5∂𝐃 ∂𝑡⁄ ∙ 𝐀ሻ𝑑𝐫ଵ௏∞
, as the magnetic radiative energy. They are not equal to each 

other. This is not acceptable because in free space the electric radiative energy of a radiator usually 
equals to its magnetic energy, which can be justified from the far-fields of a radiator with finite size. 
We have further checked in the supplementary material that it is not proper to define 𝑊௃ in (4) as 
the magnetic reactive energy, while it may be proper to define 𝑊ఘ in (3) as the electric reactive 

energy. Therefore, in order to overcome the inconsistency, we make the magnetic radiative energy 
equal to the electric radiative energy in free space, 
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Consequently, the total electric energy in (1) can be expressed as 

 𝑊௧௢௧
௘ ሺ𝑡ሻ ൌ 𝑊ఘሺ𝑡ሻ ൅𝑊௥௔ௗ

௘ ሺ𝑡ሻ  ሺ6ሻ 

and the total magnetic energy in (2) includes an additional term except the velocity energy and the 
magnetic radiative energy, 

 𝑊௧௢௧
௠ ሺ𝑡ሻ ൌ 𝑊௃ሺ𝑡ሻ ൅𝑊௥௔ௗ
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It has been demonstrated in [22] that the last term in the RHS of (7) is corresponding to the Schott 
energy in the charged particle theory [18]-[20] by applying the Lienard-Wiechert potentials [16] to 
a moving charge. We denote it as the macroscopic Schott energy, 

 𝑊ௌሺ𝑡ሻ ൌ ׬
ଵ

ଶ

ப

ப௧
ሺ𝐃 ∙ 𝐀ሻ𝑑𝐫ଵ௏∞

  ሺ8ሻ 

The total electromagnetic energy is the sum of (1) and (2). Substituting (5)-(8) into them gives [23], 
[24], 

 𝑊௧௢௧ሺ𝑡ሻ ൌ 𝑊ఘ௃ሺ𝑡ሻ ൅𝑊௥௔ௗሺ𝑡ሻ ൅𝑊ௌሺ𝑡ሻ   ሺ9ሻ 

By subtracting the radiative energy from the total electromagnetic energy, the total reactive energy 
is consequently expressed by 

 𝑊௥௘௔௖௧ሺ𝑡ሻ ൌ 𝑊௧௢௧ െ𝑊௥௔ௗ ൌ𝑊ఘ௃ሺ𝑡ሻ ൅𝑊ௌሺ𝑡ሻ   ሺ10ሻ 

(9) is the proposed energy separation equation for a pulse radiator. We want to emphasize three 
points at first:  

(i) The energy separation equation (9) for pulse radiator is directly derived from Maxwell 
equations with no approximation.  

(ii) The electric radiative energy equals the magnetic radiative energy, which is in consistent with 
the practical situation of a radiator in free space. 

(ii) The macroscopic Schott energy is related to the Schott energy in the charged particle theory, 
both are full time derivatives [22].  

We are to further verify the separation in the following sections: 
(i) In Section 2, explicit expressions for the energies are provided, which show that the Coulomb-

velocity energy is attached to its sources, and soon after the sources have disappeared, the 
macroscopic Schott becomes zero while the radiative energy keeps propagating with a constant 
amplitude.  

(ii) In Section 3, by applying the energy separation formulation to harmonic waves, it is verified 
that the time domain formulation of the theory is in consistent with its frequency domain formulation, 
which has been discussed in [14], [15] and has been comprehensively compared with other 
frequency domain formulations with several examples. 

(iii) In Section 4, Hertzian dipole is used as a standard validation example because the exact 
solutions for its fields and potentials are available both in time domain and in frequency domain, 
together with a well-established equivalent circuit model. It is checked that the results in both 
formulations are exactly in agreement with that of the circuit model. All expressions of the 
electromagnetic energies and powers corresponding to the Hertzian dipole are derived in the 
supplementary material. 

On the other hand, Poynting vector is widely considered as the electromagnetic power flux 
density [25]. Poynting Theorem describes the relationship between the Poynting vector, the varying 
rate of the total electromagnetic energy densities, and the work rate done by the exciting source. 
It provides an intuitive description of the propagation of the electromagnetic energy. However, the 
interpretation of the Poynting vector has always been controversial [26]-[30], and some 
researchers have pointed out that Poynting Theorem may have not been used in the correct way 
in some situations [32], [33]. This difficulty is largely due to the fact that it is not easy to separate 
the real radiative power flux from the Poynting vector. As the Poynting vector is related to the total 
electromagnetic energy, it should include a real radiative power flux from the contribution of the 
radiative energy and a pseudo power flux due to the fluctuation of the reactive energy. Therefore, 
a new energy-power balance equation at a certain instant time is proposed in Section 2. It is based 
on the Poynting relationship, only with some substitutions and reorganizations that are derived 
from Maxwell equations.  

Two kinds of time domain formulations for this issue can be found in published literatures. One 
was proposed by Shlivinski and Heyman [2], [3], the other was proposed by Vandenbosch [6], [7]. 
The first one is an approximate method, the second one is sometimes not in consistent with its 
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counterpart in frequency domain. The formulation proposed in this paper will remedy these 
problems. In Section 5, a loop pulse radiator and a Yagi antenna are analyzed with the proposed 
theory. They are not for comparison with the other time domain formulations but for the purpose to 
show what we can do with the proposed expressions. Numerical examples for comparison among 
various formulations in frequency domain can be found in [14], [15], [24].  

The theory is briefly discussed in Section 6, where it is emphasized that the theory is neither a 
static limit formulation nor a kind of updated version of the Carpenter formulation [28]. 

 

2. Explicit Expressions for Energies of a Pulse Radiator in Free Space 
For a pulse radiator in free space, its total electromagnetic energy is separated into three parts, as 
shown in (9). Substituting (3)~(5) and (8) into (9), we can write the energy separation expression 
explicitly as, 
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      ሺ11ሻ 

where the retarded scalar potential 𝜙ሺ𝐫, 𝑡ሻ and the retarded vector potential 𝐀ሺ𝐫, 𝑡ሻ are evaluated 
at the observation point 𝐫 and the time 𝑡 in their usual way, 

 𝜙ሺ𝐫, 𝑡ሻ ൌ ׬
ఘሺ𝐫భ,௧′ሻ

ସగఌబோభ௏ೞ
𝑑𝐫ଵ  ሺ12ሻ 

 𝐀ሺ𝐫, 𝑡ሻ ൌ 𝜇଴ ׬
𝐉ሺ𝐫భ,௧′ሻ

ସగோభ௏ೞ
𝑑𝐫ଵ  ሺ13ሻ 

In the above equations,  𝑡′ ൌ 𝑡 െ 𝑅ଵ 𝑐⁄   is the retarded time, and 𝑐  is the light velocity in vacuum 
and 𝑅ଵ ൌ |𝐫 െ 𝐫ଵ|  is the distance between the two positions. 𝜇଴  and 𝜀଴  are respectively the 
permeability and permittivity in free space. It can be seen from (11)  that the total energy consists 
of integration over the source region or the whole three-dimensional space. The integrands are all 
products of two quantities, the left ones are source distributions or their fields, while the right ones 
are potentials. 

The electric field can be expressed in terms with potentials as 𝐄ሺ𝐫, 𝑡ሻ ൌ െ𝛻𝜙ሺ𝐫, 𝑡ሻ െ 𝜕𝐀ሺ𝐫, 𝑡ሻ 𝜕𝑡⁄ . 
With some tedious derivations detailed in the supplementary material, all energies can be 
expressed with integrations over the source region, which is much more efficient than to evaluate 
them with integrations over the whole three-dimensional space. Specifically, the macroscopic 
Schott energy can be expressed with a three-fold integration, 

𝑊ௌሺ𝑡ሻ ൌ න
1
2
∂
∂𝑡
ሺ𝐃 ∙ 𝐀ሻ𝑑𝐫ଵ

௏∞

ൌ െ
1

8𝜋𝜀଴
න න

1
𝑟ଶଵ

න ൈ
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ቂ𝜌ሺ𝐫ଵ, 𝜏ሻ𝜌ሶ ቀ𝐫ଶ, 2𝑡 െ 𝜏 െ
௥మభ
௖
ቁ ൅ 𝑐ିଶ𝐉ሶ ቀ𝐫ଵ, 2𝑡 െ 𝜏 െ

௥మభ
௖
ቁ ∙ 𝐉ሺ𝐫ଶ,𝜏ሻቃ𝑑𝜏𝑑𝐫ଶ𝑑𝐫ଵ  ሺ14ሻ 

where 𝑟ଶଵ ൌ |𝒓ଶ െ 𝒓ଵ| , and the upper script “∙” represents time derivative. Note that 𝜌ሺ𝒓ଵ, 𝑡ଵሻ , 
𝑱ሺ𝒓ଵ, 𝑡ଵሻ and 𝜌ሺ𝐫ଶ, 𝑡ଶሻ, 𝐉ሺ𝐫𝟐, 𝒕𝟐ሻ stand for the sources at ሺ𝐫ଵ, 𝑡ଵሻ and ሺ𝐫ଶ, 𝑡ଶሻ, respectively. They are 
the same sources on the same radiator. As checked in the supplementary material, for a pulse 
source in ሾ0,𝑇ሿ , the innermost integral becomes zero when 𝑡 ൒ 𝑇 ൅ 0.5𝑡௠௔௫ ,  where  𝑡௠௔௫ ൌ
𝑟ଶଵ,௠௔௫ 𝑐 ⁄  is the largest travelling time between two source points. This means that, soon after the 
sources have disappeared, the volume integral of 0.5𝜕ሺ𝐃 ∙ 𝐀ሻ 𝜕𝑡⁄  over the whole space becomes 
zero even although 𝜕ሺ𝐃 ∙ 𝐀ሻ 𝜕𝑡⁄  is not zero everywhere in the space.  

In order to illustrate the property of the radiative energy in a simpler way, we introduce a principal 
radiative energy as follows, 

 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ ൌ ׬

ଵ

ଶ
ቀ
ப𝐃

ப௧
∙ 𝐀െ𝐃 ∙

ப𝐀

ப௧
ቁ𝑑𝐫ଵ௏ಮ

  ሺ15ሻ 

Making use of (5) and (15) , we can write the radiative energy as 

 𝑊௥௔ௗሺ𝑡ሻ ൌ 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ െ𝑊ௌሺ𝑡ሻ  ሺ16ሻ 
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     It is straightforward to check that 𝑊௧௢௧ሺ𝑡ሻ ൌ 𝑊௥௔ௗሺ𝑡ሻ ൅𝑊௥௘௔௖௧ሺ𝑡ሻ ൌ 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ ൅𝑊ఘ௃ሺ𝑡ሻ. 

As shown in the supplementary material, the principal radiative energy can be evaluated with 
the integration over the source region,  

𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ ൌ

1
8𝜋𝜀଴

න න
1
𝑟ଶଵ

න ൈ
௧

௥మభ ௖⁄௏ೞ௏ೞ
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௥మభ
௖
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௖
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௥మభ
௖
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௥మభ
௖
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ቑ𝑑𝜏𝑑𝐫ଶ𝑑𝐫ଵ  ሺ17ሻ 

For a pulse source over ሾ0,𝑇ሿ, the principal radiative energy becomes constant after the sources 

have disappeared, i.e., 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ ൌ 𝑊௥௔ௗ

௣௥௜ሺ𝑇ሻ for 𝑡 ൒ 𝑇. However, it can be seen from (16) that the 
radiative energy  𝑊௥௔ௗሺ𝑡ሻ continues to vary within the small time period ሾ𝑇,𝑇 ൅ 0.5𝑡௠௔௫ሿ due to the 
effect of  𝑊ௌሺ𝑡ሻ. The temporal evolution behaviors of the energies are sketched in Fig.1(a). For 
static electromagnetic fields, the radiative energy is zero, and the reactive electric (magnetic) 
energy is exactly the stored electric (magnetic) energy associated with the static sources.  

 
(a)                                                                 (b) 

Fig. 1. Sketch diagram of the energies. (a) Non zero period of the energies for a pulse radiator with sources existing in 
ሾ0,𝑇ሿ. (b) Real radiative power flux and the pseudo radiative power flux at concentric observation surfaces.  

The Poynting Theorem correctly describes the relationship between the work rate done by the 
source, the total electromagnetic energy in region 𝑉௔ ⊇ 𝑉௦, and the total electromagnetic power flux 
crossing the boundary 𝑆௔ of the region,  

െ׬ 𝐉 ∙ 𝐄𝑑𝐫ଵ௏ೞ
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ௌೌ

  ሺ18ሻ 

where the Poynting vector 𝐒 ൌ 𝐄 ൈ 𝐇 is the electromagnetic power flux density related to the total 
electromagnetic energy. 𝐧ෝ  is the outward unit vector of  𝑆௔. Using the vector identities in deriving 
(1) and (2), we can write that  

െන 𝐉 ∙ 𝐄
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ଶ

ப
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  ሺ19ሻ 

As  𝑆௔  is a fixed observation surface, the surface integral cannot be discarded like in deriving  (1) 
and (2). Integrating both side of (19) with respect to 𝑡 over ሾ0, 𝑡ሿ gives 

 𝑊௘௫௖ሺ𝑡ሻ െ𝑊ఘ௃ሺ𝑡ሻ ൌ 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ ൅ ׬ 𝑃௥௔ௗ

௣௥௜ሺ𝜏ሻ𝑑𝜏
௧
଴

  ሺ20ሻ 

𝑊௥௔ௗ ൌ 𝑐𝑜𝑛𝑠𝑡 
𝑊௥௘௔௖௧ ൌ 0 

 
𝑃௥௔ௗ
௥௘௔௟ሺ𝑟, 𝑡ሻ,𝑃௥௔ௗ

௣௦௘௨ௗ௢ሺ𝑟, 𝑡ሻ 

𝑡 ൒ 𝑇 ൅ 0.5𝑡௠௔௫  

𝑡 

𝑊௥௔ௗ ൐ 0 
𝑊௥௘௔௖௧ ് 0 

𝑟 

𝜌, 𝐉 

𝑊ఘ,𝑊௃ 

𝑊௥௔ௗ
௣௥௜  

𝑊௥௘௔௖௧ 

𝑊௥௔ௗ  

𝑊ௌ 

𝑡 𝑇 𝑇 ൅ 0.5𝑡௠௔௫ 0 
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where 𝑊௘௫௖ሺ𝑡ሻ is the total work done by the source. 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ is the principal radiative energy in 𝑉௔. 

It is defined using (15) but the integration domain is replaced by 𝑉௔. 𝐒௥௔ௗሺ𝐫, 𝑡ሻ is the integrand of 
the surface integral in (19),  

 𝐒௥௔ௗሺ𝐫, 𝑡ሻ ൌ 𝐄ൈ𝐇െ
ப

ப௧
ቀ
ଵ

ଶ
𝐇ൈ𝐀൅

ଵ

ଶ
𝐃𝜙ቁ  ሺ21ሻ 

and 𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ is its surface integral,  𝑃௥௔ௗ

௣௥௜ሺ𝑡ሻ ൌ ∮ 𝑺௥௔ௗ ∙ 𝒏ෝ𝑑𝑆ௌೌ
. Accordingly, 𝑃௥௔ௗ

௣௥௜ሺ𝑡ሻ can be interpreted 

as the principal radiative power flux passing through the observation surface 𝑆௔. It is associated 

with the principal radiative energy 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ within the surface. Since it is not easy to find a general 

explicit expression for the radiative power flux passing through the observation surface, the 

principal radiative power flux  𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ can provide a good measurement for it. As shown in harmonic 

cases and verified in Hertzian dipole, the principal radiative power flux  𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ gives a kind of time 

averaged value of the total radiative power flux that passes through the observation surface.  
For 𝑡 ൒ 𝑇 ൅ 0.5𝑡௠௔௫, we have 𝑊ఘ௃ሺ𝑡ሻ ൌ 𝑊ௌሺ𝑡ሻ ൌ 0. The total radiative energy can be expressed 

with the temporal integration of 𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ on an arbitrary observation surface enclosing the radiator,  

 𝑊௥௔ௗሺ𝑡ሻ ൌ 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ ൌ ׬ 𝑃௥௔ௗ

௣௥௜ሺ𝑡ሻ𝑑𝑡 ൌ 𝑊௘௫௖ሺ𝑇ሻ
௧೘ೌೣ
௧೘೔೙

 ሺ22ሻ  

For pulse sources, 𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ has nonzero values only over period ሾ𝑡௔,௠௜௡,𝑡௔,௠௔௫ሿ, in which 𝑡௔,௠௜௡ 

and 𝑡௔,௠௔௫  are respectively the earliest and the latest time that the fields pass through the 
observation surface 𝑆௔. As a special case, we may choose 𝑉௔ ൌ 𝑉௦, and put the observation surface 
𝑆௔ close to the surface of the sources. Assuming that all radiative fields coming out of 𝑆௔ no longer 
interact with the sources in 𝑉௦ and ignoring the radiative energy stored in 𝑉௦, we may obtain the 
power coming out of the surface of the sources as    

 𝑃௥௔ௗ଴
௣௥௜ ሺ𝑡ሻ ൌ െ׬ ቂ𝐉 ∙ 𝐄 ൅

ப

ப௧
ቀ
ଵ

ଶ
𝜌𝜙 ൅

ଵ

ଶ
𝐉 ∙ 𝐀ቁቃ𝑑𝐫ଵ௏ೞ

  ሺ23ሻ 

Apparently, 𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ at different observation surfaces are not expected to be equal, but their 

integrations over the time interval  ሾ𝑡௔,௠௜௡,𝑡௔,௠௔௫ሿ are equal, and are approximately equal to that of 

𝑃௥௔ௗ଴
௣௥௜ ሺ𝑡ሻ since all the radiative energy of the pulse source in vacuum will eventually pass through 

all observation surfaces and propagate to infinity.  
As is discussed in [20], the radiative energy is always nonnegative. It represents an irreversible 

loss of energy from the source and induces a real radiative power flux in space. The Schott energy 
can vary reversibly. For 𝑡 ൒ 𝑇 ൅ 0.5𝑡௠௔௫, although 𝑊ௌሺ𝑡ሻ ൌ 0, its integrand is not necessary to be 
zero everywhere. It induces an energy oscillation and causes a pseudo power flux. Therefore, the 
Poynting vector should include both contributions. The integration of the normal component of the 
Poynting vector on concentric spherical surfaces 𝑆௥  with radius 𝑟 can be separated into a real 
radiative power flux and a pseudo radiative power flux, 

 𝑃௣௩ሺ𝑟, 𝑡ሻ ൌ ∮ 𝐒ሺ𝐫ଵ, 𝑡ሻ ∙ 𝐧ෝ𝑑𝐫ଵௌೝ
ൌ 𝑃௥௔ௗ

௥௘௔௟ሺ𝑟, 𝑡ሻ ൅ 𝑃௥௔ௗ
௣௦௘௨ௗ௢ሺ𝑟, 𝑡ሻ  ሺ24ሻ 

Except point sources, it is generally difficult to determine the real radiative power flux and the 
pseudo radiative power flux. However, at large 𝑟, we may assume that the radiative energy in the 
very thin spherical shell ሾ𝑟 െ 𝑐𝑑𝑡, 𝑟ሿ will pass through 𝑆௥ approximately at the light velocity 𝑐, then 

we have  𝑃௥௔ௗ
௥௘௔௟ሺ𝑟, 𝑡ሻ𝑑𝑡 ൎ ∮ ׬ 𝑤௥௔ௗሺ𝑟, 𝑡ሻ𝑑𝑟

௥ା௖ௗ௧
௥ௌೝ

𝑑𝑆, which leads to 

𝑃௥௔ௗ
௥௘௔௟ሺ𝑟, 𝑡ሻ ൎ 𝑐∮ ቀെ𝐃 ∙

ப𝐀

ப௧
ቁ𝑑𝑆ௌೝ

   ሺ25ሻ 

The pseudo power flux on one observation surface can be obtained by subtracting the real power 
flux from the Poynting power flux 𝑃௣௩ሺ𝑟, 𝑡ሻ. The pseudo power flux can be either positive or 

negative, but its amplitude generally decreases with the increase of the distance to the sources. 
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However, the real radiative power flux on an observation surface is always positive, and its 
amplitude remains almost unchanged at larger 𝑟, as shown in Fig.1(b). 

3. Radiation of Harmonic Sources 
 

For harmonic fields with time convention of expሺ𝑗𝜔𝑡ሻ, the radiation is assumed to last in time 
domain from െ∞ to ൅∞, so the radiative energy is infinitely large. The Poynting theorem can be 
applied to describe the balance between the time averaged powers and the varying rate of the 
energies, 

 െ
ଵ

ଶ
׬ 𝐉∗ ∙ 𝐄𝑑𝐫ଵ௏ೞ

ൌ 2𝑗𝜔׬ ቂ
ଵ

ସ
𝐁 ∙ 𝐇∗ െ

ଵ

ସ
𝐄 ∙ 𝐃∗ቃ𝑑𝐫ଵ௏ೌ

൅
ଵ

ଶ
∮ 𝐄ൈ𝐇∗ ∙ 𝐧ෝ𝑑𝑆
ௌೌ

  ሺ26ሻ 

from which the time averaged radiative power at infinity can be evaluated with source distributions, 

ሺ𝑃௥௔ௗሻ௔௩ ൌ Re ቄ
ଵ

ଶ
∮ 𝐄ൈ𝐇∗ ∙ 𝐧ෝdS
ୗಮ

ቅ ൌ െRe ቄ
ଵ

ଶ
׬ 𝐄 ∙ 𝐉∗𝑑𝐫ଵ௏ೞ

ቅ  ሺ27ሻ 

The same symbols are used for the corresponding phasors for the sake of simplicity. With the 
theory proposed here, the power balance can be established within any domain enclosed by an 
observation surface 𝑆௔ containing the source region 𝑉௦ ,  

െන 𝐉∗ ∙ 𝐄
௏ೞ

𝑑𝐫ଵ ൌ 2𝑗𝜔න ൬
1
4
𝜌∗𝜙 ൅

1
4
𝐉∗ ∙ 𝐀൰𝑑𝐫ଵ

௏ೞ

 

൅∮ ቂ
ଵ

ଶ
𝐄 ൈ𝐇∗ െ 𝑗𝜔ቀ

ଵ

ସ
𝐇∗ ൈ𝐀൅

ଵ

ସ
𝐃∗𝜙ቁቃ ∙ 𝐧ෝ𝑑𝑆ௌೌ

  ሺ28ሻ 

The time averaged radiative power crossing the observation surface can be obtained using the 
principal radiative power flux vector 𝑺௥௔ௗ  or the source distributions,  

ሺ𝑃௥௔ௗሻ௔௩ ൌ Re∮ ሺ𝐒௥௔ௗሻ௔௩ ∙ 𝐧ෝ𝑑𝑆ௌೌ
ൌ െRe ቄ׬

ଵ

ଶ
𝐉∗ ∙ 𝐄𝑑𝐫ଵ௏ೞ

ቅ  ሺ29ሻ 

Note that the observation surface is not required to approach infinity for evaluating the radiative 
power with (29).  

The time averaged reactive energy can be calculated with the fields and the vector potential, 

ሺ𝑊௥௘௔௖௧ሻ௔௩ ൌ Re ቄ׬ ቀ
ଵ

ସ
𝐄 ∙ 𝐃∗ ൅

ଵ

ସ
𝐁 ∙ 𝐇∗ ൅

ଵ

ଶ
𝑗𝜔𝐃∗ ∙ 𝐀ቁ௏ಮ

ቅ  ሺ30ሻ 

It is easy to verify that ሺ𝑊ௌሻ௔௩ ൌ 0, so the time averaged reactive energy can be alternatively 
calculated using the source-potential products as follows 

 ሺ𝑊௥௘௔௖௧ሻ௔௩ ൌ Re ቄ׬ ቀ
ଵ

ସ
𝜌𝜙∗ ൅

ଵ

ସ
𝐉∗ ∙ 𝐀ቁ𝑑𝐫ଵ௏ೞ

ቅ    ሺ31ሻ 

Generally, (31) is much more efficient to use than (30). However, for point sources, (31) is not 
bounded. We may have to use (30) to evaluate the energy in the region excluding the point source 
area.  

 
4. Numerical Examples  
4.1. Hertzian Dipole 
A Hertzian dipole is put at the origin, as shown in Fig. 2(a). The moment of the dipole is assumed 
to be 𝑞𝑙cos𝜔𝑡, the scalar potential and the vector potential of which can be readily derived from the 
Hertzian potential Π ൌ ሺ𝑞𝑙 4𝜋𝑟⁄ ሻ cosሺ𝜔𝑡 െ 𝑘𝑟ሻ [35], [38],  

 𝐀 ൌ െ
ఠఓబ௤௟

ସగ௥
sinሺ𝜔𝑡 െ 𝑘𝑟ሻ ൫𝐫ො cos𝜃 െ𝛉෡ sin𝜃൯  ሺ32ሻ 

𝜑 ൌ
ఠమఓబ௤௟

ସగ
cosθ ቂ

ଵ

௞మ௥మ
cosሺ𝜔𝑡 െ 𝑘𝑟ሻ െ

ଵ

௞௥
sinሺ𝜔𝑡 െ 𝑘𝑟ሻቃ  ሺ33ሻ 

The Hertzian dipole is a point source. Its total reactive energy is infinite. A common strategy is 
to evaluate the energies with respect to the fields and potentials in the whole space excluding a 



 

8  

small sphere with radius 𝑎. For example, evaluate 𝑊ௌሺ𝑡ሻ with (8) instead of (14). All energies have 
been evaluated with the proposed formulae and are provided in the supplementary material.  

Since the Hertzian dipole is a point source, its fields propagate radially and cross all concentric 
spherical observation surfaces with light velocity. The real radiative power flux on the spherical 
surface 𝑆௔  can be exactly evaluated with (25), which is 𝑃௥௔ௗ

௥௘௔௟ሺ𝑎, 𝑡ሻ ൌ 2𝜔𝛼଴ሾ1 ൅ cos 2 ሺ𝜔𝑡 െ 𝑘𝑎ሻሿ, 
where 𝛼଴ ൌ ሺ𝜔𝑞𝑙ሻଶ𝜇଴𝑘 ሺ24𝜋ሻ⁄ . The amplitude of the real radiative power flux does not depend on 
the radius of the observation surface. The Poynting power flux 𝑃௣௩ሺ𝑎, 𝑡ሻ on the same surface can 

be calculated with (24). Subtracting the real radiative power flux from it, we get the pseudo power 
flux, 

 𝑃௥௔ௗ
௣௦௘௨ௗ௢ሺ𝑎, 𝑡ሻ ൌ 2𝜔𝛼଴ ቂቀ

ଶ

௞௔
െ

ଵ

௞య௔య
ቁ sin 2 ሺ𝜔𝑡 െ 𝑘𝑎ሻ െ

ଶ

௞మ௔మ
cos 2 ሺ𝜔𝑡 െ 𝑘𝑎ሻቃ   ሺ34ሻ 

which apparently decreases with the distance to the dipole.  
The principal radiative power flux at the observation surface is 2𝜔𝛼଴, a constant independent 

of the radius of the sphere. It is equal to the time averaged value of the real radiative power flux. 
The calculated Q factor of the dipole is exactly in agreement with the result shown in [39].  

The well-established equivalent circuit model proposed by Chu [36] for Hertzian dipole is shown 
in Fig. 2(b). Assume that the current in the radiation resistor at the interface  𝑆௔ with radius 𝑟 ൌ 𝑎 
is 𝑖ோ ൌ 4𝜔𝛼଴ cosሺωt െ kaሻ. The energies stored in the capacitor and the inductor can be easily 
derived using circuit theory. It has been verified that, both in time domain and in frequency domain, 
the reactive magnetic energy exactly equals to the energy stored in the inductor in the equivalent 
circuit, and the reactive electric energy exactly equals to the energy stored in the capacitor in the 
equivalent circuit. Detailed results can be found in the supplementary material.  

 
(a)                                                            (b) 

Fig. 2.  Hertzian dipole. (a) Coordinate system, (b) Equivalent circuit model. 

4.2. Solenoidal Loop 
The solenoidal surface current on a ring is described by  𝐉ୱሺ𝐫, 𝑡ሻ ൌ 𝐼ሺ𝑡ሻ𝛗ෝ  [A/m], as shown in Fig. 
3(a). The inner and outer radius of the ring is 0.08m and 0.1m, respectively. The temporal function 

is a modulated Gaussian pulse, 𝐼ሺ𝑡ሻ ൌ 𝑒ିఊ
మ
sin𝜔𝑡   for 0 ൑ 𝑡 ൑ 𝑇 . 𝜔 ൌ 2𝜋 ൈ 10ଵ଴ , 𝛾 ൌ

2√5 ሺ𝑡 െ 0.5𝑇ሻ 𝑇⁄ , and  𝑇 ൌ 1ns. Two spherical surfaces with radius of 0.2m and 10m are chosen 
as the observation surfaces, with their centers coinciding with that of the source. They are labeled 
by sphere-1 and sphere-2, respectively. The principal radiative energy passing through sphere-1 

and sphere-2 are calculated with integration of  𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ , as expressed in (22). 𝑊௣௩ሺ𝑡ሻ  is the 

integration of the Poynting power flux passing through the observation surface, i.e., 𝑊௣௩ሺ𝑡ሻ ൌ

׬ 𝑃௣௩ሺ𝑟, 𝜏ሻ𝑑𝜏
௧
଴

. 

                   
(a)                                                                                            (b) 

𝐿 ൌ 𝑎 𝑐⁄  

𝐶 ൌ 𝑎 𝑐⁄  
𝑅 ൌ 1 

𝑧 

𝜃 

𝑞𝑙cos𝜔𝑡 

𝐫 

𝑥 

𝑦 

𝑜 
𝜑 

𝐉௦ 

sphere-1 

Feed 1.09m 0.903m 1m 

0.498m 0.249m 
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Fig. 3. Radiator examples. (a) Solenoidal loop current, inner and outer radius of the ring is 0.08m and 0.1m. (b) Thin plate 
Yagi antenna with 3 PEC plates. 

 
The excitation energy, the principal radiative energy, the macroscopic Schott energy, and the 

reactive energy evaluated with the proposed method are shown in Fig. 4(a). In this case, the current 
is solenoidal and its corresponding charge is zero. The reactive energy includes the contribution 
from the current alone, and is denoted as 𝑊௃ in the figures. 𝑊௃ oscillates with the source and admits 
negative values periodically. It is acceptable because the reactive energy is dependent on the 
potentials, which are values relative to their reference zero points. When the current varies and 
changes its direction periodically, the retarded vector potential in the source region lags behind 
and may point in direction opposite to that of the current, causing negative values. We consider 
that in this situation the loop current does not radiate energy into the surrounding space. Instead, 
it absorbs energy that it had radiated earlier. An equivalent explanation is, when the energy is 
negative, the inductance associated with the loop current is negative, as explained in the 
supplementary material. Note that the macroscopic Schott energy in the charged particle theory 
may also be negative [20], [40]. It is plotted in Fig.4(a) as well, and is zoomed-in in Fig.4(b) together 
with 𝑊௃. It can be seen that the macroscopic Schott energy oscillates like 𝑊௃ but continues to exist 
for about 0.33ns after the source has disappeared at 1ns.  

The energies passing through sphere-1 are shown in Fig. 4(c). The smallest and the largest 
distance between the source and sphere-1 are respectively 0.1m and 0.3m. The fields reach the 
observation surface at about 0.33ns. All fields, hence all radiative energy, should have passed 
through sphere-1 at 2ns. Therefore, the principal radiative energy evaluated at t=2ns must equal 
to the total radiative evaluated at the source region.   

The excitation power (denoted by EJ), the principal radiative power flux and the time varying rate 
of the reactive energy are shown in Fig. 4(d). The power fluxes on sphere-1 and sphere-2 are 

shown in Fig.4(e) and (f), respectively. 𝑃௥௔ௗ଴
௣௥௜ ሺ𝑡ሻ varies smoothly and remains positive, while the 

Poynting power flux contains ripples coming from 𝑃௥௔ௗ
௣௦௘௨ௗ௢ሺ𝑟, 𝑡ሻ, which gradually decreases with the 

propagation distance. 

   
(a)                                                               (b) 
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(c)                                                         (d) 

   
(e)                                                         (f) 

Fig.4. Loop current. (a) The energies evaluated in the source region. (b) The zoom-in figure for 𝑊௃ and 𝑊ௌ. (c) The 
energies passing through sphere-1. (d) The powers evaluated in the source region. (e) The powers passing sphere-1. (f) 
The powers crossing sphere-2. 

4.3. Thin Plate Yagi Antenna 
The geometrical structure and parameters of the Yagi antenna is shown in Fig. 3(b). It consists of 
3 PEC plates with zero thickness: a dipole in the middle, a reflector in the left and a director in the 
right. The width of all plates is 2mm. The dipole is fed at its center with a Delta-gap voltage source 
of 𝑉௙௘௘ௗሺ𝑡ሻ ൌ 1.0 sinሺ𝜔𝑡ሻ ሾ𝑉ሿ, 𝑡 ൒ 0.  𝜔 ൌ 2𝜋 ൈ 1.5 ൈ 10଼, which corresponds to 150MHz.  

The first step is to calculate the surface current by solving the surface electric field integral 
equation (EFIE) with marching-on in time scheme (MOT) [41]. The plates are triangularly meshed, 
and the surface current is expanded with RWG basis functions [42]. There are 53, 59, and 50 
RWGs on the left, the middle and the right plate, respectively. The Delt-gap voltage feeding is put 
on the common edge of the RWG in the middle of the dipole. The time step of the MOT is 2.67ps. 
Stable results of the surface current density and the surface charge density are available, together 
with their time derivatives. 

The second step is to evaluate the energies and powers using the obtained surface currents and 
charges with the expressions we have proposed. When calculating the macroscopic Schott energy 
and the principal radiative energy, the integration interval of the innermost integral is dependent on 
the distance between two points. It may become much smaller than the time step and should be 
handled carefully to get satisfactory numerical accuracy. For 𝑟௜௝ ൌ 0 , we have to use the 

L’Hospital rule to find the limit of the innermost integral. A description on the numerical 
implementation can be found in the supplementary material. 

The principal radiative power fluxes of the 3 plates are calculated separately with (23), but the 
integration domain is respectively replaced by those of the three plates. The results are shown in 
Fig. 5(a). The Coulomb-velocity energies are shown in Fig.5(b). As shown in the figures, the 
principal radiative power flux of the dipole is always positive. It radiates electromagnetic energy to 
the space from the beginning. However, the principal radiative power fluxes of the reflector and the 
director are negative at the beginning, which means that they absorb energy from the dipole at the 
transition stage. When the radiation enters the steady state, the reactive energies tend to become 
steady stable. Since the PEC reflector and the PEC director are passive elements, they do not 
radiate by themself, but only scatter away the electromagnetic energies they received from the 
dipole. Consequently, their principal radiative powers are zero at the steady state.  

The total energies of the Yagi antenna (3 plates as a whole) are plotted in Fig. 5(c). After a short 
transition stage, the radiation approaches steady state. It can be seen that the macroscopic Schott 
energy gradually becomes an oscillation with approximately the same period of the excitation. It 
brings ripples to the total reactive energy and the total radiative energy. The total reactive energy 
tends to become steady and bounded, while the radiative energy increases approximately linearly. 
For a harmonic source that began radiating from 𝑡 ൌ െ∞ , the radiative energy is naturally 
unbounded.  
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The principal radiative power flux and the Poynting power flux of the Yagi antenna are evaluated 
on a spherical observation surface with radius of 2m, the center of which locates at the feeding 
point of the antenna. The results are illustrated in Fig. 5(d).   

      
(a)                                                                     (b) 

   
(c)                                                                     (d) 

Fig. 5. Results of the Yagi antenna. (a)The principal radiative power flux passing through the surface of each plate. (b) 
The Coulomb-velocity energy of each plate. (c) The macroscopic Schott energy, principal radiative energy and the 
Coulomb-velocity energy of the antenna. (d) Electromagnetic powers passing through the observation surface. 

The directivity of the Yagi antenna inevitably varies in the transition stage. The normalized 
directivity patterns in the E-plane and the H-plane at 10ns, 20ns, and 40ns are depicted in Fig. 6. 
As can be seen, in the beginning stage, the passive reflector and the passive director absorb more 
electromagnetic energies than the energies they radiated. They perform like absorbers instead of 
radiators. The radiation of the Yagi antenna is mainly determined by the center dipole, so the 
pattern is like that of a single dipole.  The antenna performs like a Yagi antenna only after the two 
passive plates have achieved a balance between their absorbed and scattered powers.  

                    
(a)                                                                              (b) 
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Fig. 6. Evolution of the radiation pattern. (a) E-plane. (b) H-plane. 

5. Conclusions 
Some issues concerning with the electromagnetic radiation of antennas have remained to be 
ambiguous or even controversial for decades long, especially the definitions for the reactive energy. 
The introduction of the macroscopic Schott energy makes it possible to separate the radiative 
energy and the reactive energy in a consistent formulation. As a result, a new form of power 
balance equation is derived from the Poynting relation. Analysis shows that the Poynting vector 
includes the contribution from the propagation of the radiative energy and the fluctuation of the 

reactive energy. The newly defined principal reactive energy 𝑊௥௔ௗ
௣௥௜ሺ𝑡ሻ and its flux, the principal 

radiative power flux 𝑃௥௔ௗ
௣௥௜ሺ𝑡ሻ , can characterize the main property of the radiative energy. 

Furthermore, they can be numerically evaluated more efficiently.  
 As is pointed out in the introduction, the main problem of the issue is how to separate the 

radiative energy and the reactive energy. We divide the electromagnetic energy into three parts: 
the Coulomb-velocity energy 𝑊ఘ௃ሺ𝑡ሻ, the macroscopic Schott energy 𝑊ௌሺ𝑡ሻ, and the radiative 

energy 𝑊௥௔ௗሺ𝑡ሻ. The explicit and accurate expressions for them are derived and verified with their 
temporal evolution properties. All the expressions are strictly derived from Maxwell equations with 
no approximations. They are no static limit as the potentials involved are all retarded ones.  

 The basic theory is for time varying pulse radiators. We also provided formulae for harmonic 
waves. Unlike Vandenbosch formulation in which the results obtained with time domain formulation 
sometimes may not agree with those obtained using the frequency domain formulation, in the 
theory proposed here, the results in time domain and frequency domain are completely in 
consistent because they are directly derived from the time domain Maxwell equations and the 
frequency domain Maxwell equations, respectively. The electromagnetic fields in frequency 
domain and time domain can be converted to each other with Fourier Transform.  

The theory is completely different from the Carpenter formulation [28]. In Carpenter formulation, 
it was proposed to use the Coulomb-velocity energy alone as the total electromagnetic energy and 
to replace the Poynting Theorem with a new equation. The formulation, as well as the power flow 
vector 𝜙𝐉 by Slepian [43], was pointed out to be mathematically flawed by Dr. Endean [44]. In our 
theory, we combine the Coulomb-velocity energy and the macroscopic Schott energy together to 
form the reactive energy. The theory does not suffer from the mathematical flaw since there is no 
modification to the total electromagnetic energy and the Poynting Theorem. 
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