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ABSTRACT In the proposed theory, the total electromagnetic energy of a radiator is separated into three 
parts: a Coulomb-velocity energy, a radiative energy, and a macroscopic Schott energy. The Coulomb-
velocity energy is considered to be attached to the sources as the same in the charged particle theory. It 
becomes zero as soon as its sources have disappeared. The radiative energy leaves the radiator and propagates 
to the surrounding space. The macroscopic Schott energy continues to exist for a short time after the sources 
have disappeared. It is a kind of oscillating energy and is considered to be responsible for energy exchange 
between the reactive energy and the radiative energy, performing like the Schott energy in the charged particle 
theory. As the Poynting vector describes the total power flux density related to the total electromagnetic 
energy, it should include the contributions of the real radiative power and a pseudo power flow caused by the 
fluctuation of the reactive energy. The energies involved in the electromagnetic mutual coupling are 
interpreted in a similar way. In the theory, all energies are defined with explicit expressions in which the 
vector potential plays an important role. The time domain formulation and the frequency domain formulation 
of the theory are in consistent with each other. The theory is also verified with Hertzian dipole. Numerical 
examples demonstrate that the theory may provide insightful interpretation for electromagnetic radiation and 
mutual coupling problems. 

INDEX TERMS Reactive energy, Schott energy, radiative energy, electromagnetic coupling, Poynting 
vector 

I. INTRODUCTION 
The electromagnetic radiation and coupling problems have 
been intensively investigated for more than a hundred years. 
It is a little bit strange that there is still no widely accepted 
formulation for evaluating the stored reactive energy and Q 
factor of radiators [1]-[14]. The main difficulty comes from 
the fact that there is no clear definition in macroscopic 
electromagnetic theory for the reactive electromagnetic 
energy and the radiative electromagnetic energy. It is 
commonly known in classical charged particle theory that 
the fields associated with charged particles can be divided 
into Coulomb fields, velocity fields and radiative fields 
[16][17]. The energy carried by Coulomb fields and velocity 
fields is referred to as Coulomb-velocity energy in this paper. 
The radiative fields are generated by acceleration of charged 
particles, emitting radiative energy to the surrounding space. 
The Coulomb-velocity fields and energy are considered to be 
attached to the charged particles, or simply speaking, they 
appear and disappear with the charged particles. On the 
contrary, after being radiated by the charged particles, the 
radiative fields and energy depart from the sources and 
propagate to the remote infinity. They exist after their 

generation sources have disappeared and can couple with 
other sources they encounter in their journey. Schott energy 
was first introduced in 1912 by Schott [18]-[20]. It is 
reversible and is responsible for energy exchange between 
the Coulomb-velocity energy and the radiative energy. 
Although it is natural to consider that the reactive energy in 
macroscopic electromagnetics is similar to the Coulomb-
velocity energy and the Schott energy, no successful attempt 
has been found or well accepted to handle the reactive energy 
in this manner.  

On the other hand, Poynting vector is widely considered 
as the electromagnetic power flux density [21]. Poynting 
Theorem describes the relationship between the Poynting 
vector, the varying rate of the total electromagnetic energy 
densities, and the work rate done by the exciting source. It 
provides an intuitive description of the propagation of the 
electromagnetic energy. However, interpreting the Poynting 
vector as the electromagnetic power flux density has always 
been controversial [22]-[32], and some researchers have 
pointed out that Poynting Theorem may have not been used 
in the correct way in some situations [33][34]. This difficulty 
is largely due to the fact that it is not easy to separate the real 
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radiative power flux from the Poynting vector. 
It is known that the Poynting Theorem is not convenient 

to use for evaluating the reactive energy stored by radiators 
in an open space [5][13], which has been investigated for 
decades. For harmonic fields, the total electromagnetic 
energy obtained by integrating the conventional energy 
densities of  0.5D E  and  0.5B H  over the infinite three-

dimensional volume is infinite because it includes the 
radiative energy and the reactive energy. For harmonic fields 
over the time interval  t    , the radiative energy 

occupies the whole space and is infinitely large [14]. Some 
researchers suggested that those fields associated with the 
propagating waves should not contribute to the stored 
reactive energy. The reactive energy can be made finite by 
subtracting from the total energy density an additional term 
associated with the radiative power. However, it is not easy 
to give a general expression for that term because the 
propagation patterns are quite different for different radiators 
[1] [5]. 

Based on these observations, the macroscopic electro- 
magnetic radiation issue is revisited and a new energy-power 
balance equation at a certain instant time is proposed. It is 
based on the Poynting relation, only with some substitution 
and reorganization that can be derived from Maxwell 
equations. The new equation gives an intuitive and 
reasonable demonstration that the Poynting vector does not 
only contain the radiative power flux density but also the 
pseudo power flux caused by the fluctuation of the reactive 
energy. 

In Section II, a definition for the reactive electromagnetic 
energy is proposed based on the hypothesis that the reactive 
energy in the macroscopic electromagnetics bears the same 
characteristics as the Coulomb-velocity energy and the 
Schott energy: (i) it is attached to the sources. It disappears 
simultaneously with its sources or soon after its sources have 
disappeared; (ii) the definition is in consistent with the stored 
energy associated with static charges and static currents; (iii) 
the reactive energy has properties different to the radiative 
energy, but its fluctuation performs like the radiative fields 
and propagates in free space at the light velocity. Based on 
these considerations, it seems natural to define the Coulomb-
velocity energy alone as the reactive energy. However, 
further analysis shows that this choice will lead to 
disagreement in the radiative electric energy and the 
radiative magnetic energy. In order to overcome this 
inconsistency, a special term has to be introduced, which can 
be demonstrated to be exactly the Schott energy in the 
charged particle theory [18][20] by applying the Lienard-
Wiechert potentials [32] to a moving charge [35]. As a 
consequence, the Poynting vector is divided into two vectors. 
One vector accounts for the power flux density associated 
with the radiative energy, the other vector accounts for the 
effect of the fluctuation of the reactive energy.  

A closely related issue is the electromagnetic mutual 

coupling, which plays a very important role in many systems. 
Efficient and accurate analysis of electromagnetic mutual 
coupling is still a challenging issue [36]. In Section III, the 
theory is extended for handling multiple radiators. We can 
aggregate all radiators together and treat them as a single 
larger radiator, similar to an antenna array. The mutual 
electromagnetic coupling energies are defined in the same 
way. One radiator may exert electromagnetic coupling to 
other sources through its potentials instead of fields. The key 
issue involved in the electromagnetic mutual coupling is the 
same as that in the electromagnetic radiation problem.  

This paper focuses on discussing the time domain 
formulation associated with pulse radiators, which is 
hopefully to provide a more insightful understanding to the 
electromagnetic radiation and mutual coupling process. It 
will be shown in Section IV that, just as expected, by 
applying the formulation to harmonic fields, the 
corresponding formulation in frequency domain can be 
obtained straightforwardly and is exactly the same as that 
proposed in [14], which verifies that the time domain 
formulation and the frequency domain formulation of the 
theory are in consistent with each other. 

Hertzian dipole with harmonic excitation is a standard 
validation example for these situations because the exact 
solutions for its fields and potentials are available both in 
time domain and in frequency domain, together with a well-
established equivalent circuit model. In Section VI, all the 
expressions of the electromagnetic energies and powers 
corresponding to the Hertzian dipole are derived. They are 
exactly in agreement with those obtained with circuit model.     

Two kinds of time domain formulations for this issue can 
be found in published literatures. One was proposed by 
Shlivinski and Heyman [2][3], the other was proposed by 
Vandenbosch [6][7]. The first one is an approximate method, 
the second one is sometimes not in consistent with its 
counterpart formulation in frequency domain. In Section VII, 
a loop pulse radiator and a Yagi antenna are analyzed with 
the proposed theory. They are not for comparison with the 
other two time domain formulations but for the purpose to 
show what we can do with the proposed expressions. 
Numerical examples for comparison among various 
formulations in frequency domain can be found in [14][15].  

The theory is briefly discussed in Section VIII, where it is 
concluded that the theory is neither a static limit formulation 
nor a kind of updated version of the Carpernter formulation 
[24].  

II. FORMULATIONS FOR REACTIVE AND RADIATIVE 
ENERGIES 
Consider in free space a radiator with charge density 

 1, t r  and  1, tJ r , 1 sVr . Denote 

      1 1 1

1
, ,

2sV
W t t t d    r r r   (1) 
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      1 1 1

1
, ,

2s
J V

W t t t d  J r A r r   (2) 

 W t  and  JW t  have the dimension of energy. The scalar 

potential  , t r  and the vector potential  , tA r  evaluated 

at the observation point r  and the time t  are defined in their 
usual way, 

    1
1

0 1

,
,

4sV

t
t d

R







 
r

r r   (3) 

    1
0 1

1

,
,

4sV

t
t d

R





 
J r

A r r   (4) 

In the above equations,  t t R c    is the retarded time, and 

c is the light velocity in vacuum and 1 1R  r r  is the 

distance between the two positions. 0  and 0  are 

respectively the permeability and permittivity in free space. 
The potentials have to satisfy the Lorentz Gauge, and their 
reference zero points are put at the infinity. 

From Maxwell equations, the electric energy density and 
the magnetic energy density can be transformed to 

  1 1 1 1

2 2 2 2 t
  

   

A

D E D D     (5) 

  1 1 1 1

2 2 2 2t


    


D

B H J A A H A      (6) 

where E , H  are the electromagnetic fields, and D , B  are 
the flux densities. Integrating (5) over a domain a sV V  and 

making use of (1) gives 

   1

11 1 ˆ
22 2a aV S

W d dSt
t

      
A

r D nD E D      (7) 

where aS  is the surface enclosing aV  with outward normal 

unit n̂ . (7) shows that  W t  is basically an electric energy 

and can be separated into two parts: one part is stored in the 
domain aV , the other part passes through aS  and resides in 

the region outside aV . Recalling that    2ˆlim 1
r

O r


D r   

and  lim 1
r

O r


 , where r̂  is the unit radial vector, the 

surface integral at the RHS of (7) approaches zero at S  

with r  . Therefore, the energy defined by  W t  really 

has the meaning of being stored in the space with no energy 
leaking to the infinity. Furthermore, it can be checked that 

 W t  satisfies the three terms listed in the previously 

specified hypothesis. Therefore, it seems not improper to 
define  W t  as the reactive electric energy of the pulse 

radiator, 

    1

1 1

2 2
e

react V
W d Wt t

t




   
 
A

rD E D    (8) 

Let     10.5
tot

e

V
W t d



  rD E  denote the total electric 

energy. Since      e e e
tot rad reactW W Wt t t  , it is natural to 

define the total radiative electric energy as  

   1

1

2
e

rad V
W dt

t

   
 
A

rD   (9) 

It’s important to emphasize that when the charge source has 
disappeared, the total reactive electric energy  e

reactW t  

becomes zero, but it only means that the volume integral of 
(8) is zero. There may still exist nonzero electromagnetic 
fields in the space.    

Integrating (6) over the domain a sV V  and making use 

of (2) gives 

  1

1 1 1 ˆ
2 2 2a a

J V S
W d dSt

t

       
    
D

r nB H A H A      

 (10) 
which shows that  JW t  is basically a magnetic energy. 

However, it is not proper to directly define  JW t  as the 

reactive magnetic energy. Firstly, the surface integral in (10) 
is usually a bounded but nonzero value at S  since 

   2ˆlim 1
r

O r


H A r  . Therefore,  JW t  is not an 

energy purely stored in the whole space V  because it 

contains a part of energy leaking to the infinity, which is 
related to the electromagnetic radiation. Secondly, in 
vacuum, the total radiative electric energy of a radiator 
should equal its total radiative magnetic energy. Denote the 

total magnetic energy as     10.5
a

m
tot V

W dt   rB H . If 

 JW t  is defined as the reactive magnetic energy, it can be 

checked from (10) that the resultant radiative magnetic 
energy, which is    m

tot JW Wt t , will not equal the 

corresponding radiative electric energy  e
radW t . Thirdly, as 

has been verified in our previous works [37][38], in the case 
of the Hertzian dipole, the reactive electric energy defined by 

 e
reactW t  is exactly in agreement with the electric energy 

stored in the capacitor in its equivalent circuit model 
proposed by Chu [39]. However, the reactive magnetic 
energy calculated with  JW t  does not exactly equal the 

magnetic energy stored in the equivalent inductor. Only their 
time averaged values are equal. Taking into account of these 
facts, the definition of the reactive magnetic energy of a 
radiator is modified by making the total radiative magnetic 
energy equal the total radiative electric energy. Explicitly, 
we define 

      1

1 1

2 2
m m m

react tot rad V
W W W dt t t

t

     
 
A

rB H D   (11) 

wherein    m e
rad radW Wt t  is applied. Making use of (6), the 

reactive magnetic energy can be evaluated with  

 

   1 1

11
22

1 ˆ
2

s

m
react V V

S

W d dt
t

dS





     
   
 

 



r rJ A D A

nH A

 


  (12) 

There is an additional volume integral in the reactive 
magnetic energy, which is defined as the macroscopic Schott 



4 
 

energy, 

     1

1

2S V
W dt

t




 rD A   (13) 

In order to reveal the property of the term  SW t , recall 
the expression for the electric flux density as follows,  

 

     

   

   

0 0

1 11 1 1 1

1 11 1 1 12

, , ,

,

1
,

s

s

V

V

t t t
t

G dt dt t t R c

G dt dt t t R c
c

  











   



    

  

 

 

D Ar r r

rr

J rr 

 (14) 

where the superscript “˙” means derivative with respect to 
time. The time domain Green’s function can be expressed 
with the Dirac delta function, 

    1
1 1 1

1

, ;
4

t R c
G t R c

R





r r   (15) 

Substituting (4) and (14) into  SW t  yields the integration 

over source region 

 

   

 

 

 

1 11 1

2
0 1 21 11 1

2 22 2

1

2

,

,

,

s s

S V

V V V

W dt
t

G dtt

d d dc G dtt

G dtt

























    
        
 
 




   



rD A

r

r r rJ r

J r







 (16) 

where  1,2 1,21,2 t t R cG G    and 1,21,2R  r r . With 

the derivation detailed in the Appendix, the integral can be 
explicitly expressed by an integration over the source region, 

 

 

 

21
0 21

21
1 2

2 1
2 21

21

1 1

8

, , 2

,, 2

s s

t

S V V t r c
W t

r

r
t

c
d d d

r
c t

c



  








  

        
       

  



 

r r
r r

J J rr

  (17) 

where 21 2 1r  r r . Note that  1 1, t r ,  1 1, tJ r   and 

 2 2, t r ,  2 2, tJ r  stand for the sources at  1 1, tr  and 

 2 2, tr , respectively. They are the same function related to 

the same radiator. For a pulse source in  0,T , as checked in 

the Appendix, the integral becomes zero when 

21,max 2t T r c  ,  where 21,maxr  is the largest distance 

between two source points. This means that after the sources 
have disappeared, although   t D A   is not zero 

everywhere in the space, its volume integral over the whole 
space, i.e.,  SW t , soon becomes zero.  

The reactive electromagnetic energy is the sum of the 
reactive electric energy defined in (8) and the reactive 
magnetic energy defined in (11), 

   1

1 1

2 2
react V

W t d
t

     
A

rD E B H D     (18) 

For pulse radiator, the surface integral in (12) is zero as the 
fields never reach S . Hence, the reactive energy is 

numerically equal to  

   

   

1 1

11 1
22 2s

react V V

J S

W d dt
t

W Wt t




     
 

 r rJ A D A 
 (19) 

where      J JW W Wt t t   . It is the Coulomb-velocity 

energy. 
The total radiative energy is the sum of the radiative 

electric energy and the radiative magnetic energy, which is  

       1
e m

rad rad rad V
W W W dt t t

t

       
A

rD   (20) 

For static electromagnetic fields, the radiative energy is 
zero, and the reactive electric (magnetic) energy is exactly 
the stored electric (magnetic) energy associated with the 
static sources.  

Introduce a principal radiative energy as 

  0 1

1

2rad V
W dt

t t

      
D A

rA D    (21) 

The radiative energy can then be divided into two parts, 
      0rad rad SW W Wt t t    (22) 

With these definitions, the total electromagnetic energy can 
be expressed with  

 

     
   

     
0

tot react rad

rad J

J rad S

W W Wt t t

W Wt t

W W Wt t t





 

 

  

  (23) 

As shown in the Appendix, the principal radiative energy can 
be evaluated with the integration over the source region,  

 

 

   
   

   
   

21
0

0 21

1 2 21

1 21 2

2 1

1 2 212

1 21 2

1 1

8

, ,

, ,

, ,

, ,

s s

t

rad V V r c
W t

r

r c

r c
d d d

r c
c

r c



  

  


 

 




  
  
     

 
  

        

  
r r

r r
r r

J Jr r

J Jr r








  (24) 

It can be checked that for a pulse source over  0,T , 

   0 0rad radW Wt T  for t T . However, as seen from (22), 

the total radiative energy continues to vary in a small time 
period 21,max, 2T T r c    due to the effect of   SW t .  

For a pulse radiator with sources existing in  0,T , its 

total energy can be divided into      0tot J radW W Wt t t  , 

as shown in (23). This is what we had proposed in our 
previous works [37][38]. However, careful examination 
shows that, for oscillating pulses,  0radW t  does not exactly 

equal the radiative energy but only approximately equals its 
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time averaged value. The oscillating component of the 
radiative energy is lost, as will be demonstrated later in the 
examples. At the same time,  JW t  does not exactly reflect 

the stored magnetic energy for a Hertzian dipole. We have 
revisited the issue of the electromagnetic radiation of a 
moving charged particle [16][17] and finally realized that 
radiative fields can interact with other sources before they 
completely leave the source area. The interaction causes 
oscillatory energy exchange. Therefore, we introduce the 
macroscopic Schott energy  SW t  in our formulation to 

account for the energy exchange between   JW t  and 

 0radW t , and divide the total energy of a radiator into a 

reactive energy      react J SW W Wt t t   and  a radiative 

energy      0rad rad SW W Wt t t  , where the Schott energy 

 SW t  plays the role of energy exchanging. It can be verified 

that the Coulomb-velocity energy  JW t  is strictly attached 

to the sources and appears/disappears simultaneously with 
the sources. However, the Schott energy  SW t  does not 

disappear simultaneously with its sources. It continues to 
remain nonzero within the period of 21,max, 2T T r c    and 

then disappears. Since the sources have disappeared for 
t T , the nonzero Schott energy  SW t  cannot be absorbed. 

Because of energy conservation, the only possible way is that 
 SW t  converts to radiative energy, corresponding to the 

change of the radiative energy in this time interval after the 
sources have disappeared. As is discussed in [20], the 
radiative energy is always nonnegative and it describes an 
irreversible loss of energy, while the Schott energy can 
change reversibly. On the other hand, for 21,max 2t T r c  , 

although   0SW t  , its integrand is not necessary to be zero 

everywhere. It induces an energy oscillation and contributes 
to the Poynting vector.  

The Poynting Theorem correctly describes the 
relationship between the work rate done by the source, the 
total electromagnetic energy in region a sV V  containing 

the source, and the total electromagnetic power flux crossing 
the boundary aS  of the region,  

1 1

1 1
ˆ

2 2s a aV V S
d d dS

t

          J E r D E B H r S n      (25) 

where the Poynting vector  S E H  is conventionally 
regarded as the power flux density. With the definition of (18) 
and (20), it can be rewritten as  

 
1 1

1

1 1

2 2

ˆ

s a

a a

V V

V S

d d
t t

d dS
t

        
     

 

 

A
J E r D E B H D r

A
D r S n

   

 
 (26) 

which clearly implies that the Poynting vector contains the 
contribution from the propagation of the radiative energy and 
the fluctuation of the reactive energy.  

Now we will show that  0radW t  associated with a 

bounded volume is a convenient quantity for engineering 
application. Substituting (5) and (6) into (25) and 
reorganizing it gives 

 

 

1 1

1

2

1
ˆ

2

s a

a

JV V

S

d W dt
t t t t

dS
t





            
       

 



D A
J E r rA D

E H H A D n

  


  (27) 

For the sake of convenience, a new vector is introduced for the 
integrand of the surface integral in (27), 

  0

1 1
,

2 2rad t
t

         
S E H H A Dr   (28) 

It has to be noted that 0radS  is not the radiative power density. 

Denote its surface integral as   

   0
ˆ

a
Srad radS

P t dS  S n   (29) 

The total work done by the source is  

      1 1 1, ,
s

t

exc V
W t d d  


   J r E r r   (30) 

Integrating both side of (27) gives 

        0 0

t

exc J rad SradW W W P dt t t       (31) 

where  0radW t  is defined using (21) but with the integration 

domain replaced by aV . Accordingly,  SradP t  can be 

interpreted as the principal radiative power associated with 
the principal radiative energy  0radW t  passing through the 

observation surface aS . Since it is not easy to find an explicit 

expression for the total radiative power passing through the 
observation surface, the principal radiative power  SradP t  

can provide a good measurement for it. As shown in the 
Hertzian dipole and the other examples, the principal 
radiative power  SradP t  gives a kind of time averaged value 

of the total radiative power passing through the observation 
surface.  

For 21,max 2t T r c  , we have     0J SW Wt t   . The 

total radiative energy can be expressed with the temporal 
integration of  SradP t  on an arbitrary observation surface 

enclosing the radiator,  

        max

min
0

t

rad rad Srad exct
W W P dt W Tt t t     (32) 

For pulse sources,  SradP t  has nonzero values only over 

period  min maxt t t   , in which mint  and maxt  are 

respectively the earliest and the latest time that the fields pass 
through the observation surface. As a special case, we may 
choose a sV V , and put the observation surface aS  close to 

the surface of the sources. Assuming that all radiative fields 
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coming out of aS  no longer interact with the sources in sV  

and ignoring the radiative energy stored in sV , we may 

obtain the power coming out of the surface of the sources as    

  0 1

1 1

2 2s
Srad V

P t d
t

           
 J E J A r    (33) 

Apparently,  SradP t  at different observation surfaces are 

not expected to be equal, but their integrations over the time 

interval  min maxt t t   are equal, and are approximately 

equal to that of  0SradP t  since all the radiative energy of the 

pulse source in vacuum will eventually pass through the 
observation surface and propagate to infinity. 

III. MUTUAL COUPLINGS 
Consider a group of N radiators in vacuum. The i-th radiator 
has source  ,i iJ  in region siV . The reactive 

electromagnetic energy coupled from source-j to source-i is 
expressed as 

   

   
   

 

 

0

2

2

1 1 1

2 2 2

1 1

8

, ,

, ,

, , 2

,, 2

si

si sj

ij

react
i jij i j i j iV

V V
ij

i i j j ij

i i j j ij

ij
i i j j

t

t r c
ij

ji ji

W t d
t

r

t t r c

c t t r c

r
t

c
d

r
c t

c

 



 

   









     

 

 

  

                     



 



D AJ A r

r r

J r J r

r r

rJ Jr







 

j id d











r r

  (34) 

where ,i jA  and ,i j  are respectively the vector potential and 

the scalar potential generated by the source  , ,,i j i j J .  

The mutual coupled reactive energies also include the 
Schott energies, which may be denoted by  SijW t . It is 

straightforward to check that the total reactive energy of the 
system is  

    
1 1

N N
react react

tot ij
i j

W Wt t
 

    (35) 

It contains the self reactive energies ( i j ) and the mutual 
coupled reactive energies ( i j  ). Note that conventional 
formulations may be difficult to be extended to contain 
multiple radiators because it is difficult to determine the 
coordinate origin and the subtraction term. 

The mutual radiative energy from source-j to source-i is 

  
si

jrad
ij i iV

W t d
t

 
   


A
D r   (36) 

which is the energy radiated by radiator-i when it is excited 
by radiator-j. 

In circuit theory, mutual coupling is usually referred to the 
coupling between the energies stored in inductors or 
capacitors, not including the losses dissipated by resistors. 
As the mutual radiative energy is a kind of radiation loss to 
the radiator, it is reasonable to consider that electromagnetic 
mutual coupling energies only include the mutual reactive 
energies.  

The electromagnetic radiation and coupling problem of 
two pulse radiators is illustrated in Fig.1. We only analyze 
the radiation of radiator-1 in the region 1sV . It induces a 

Coulomb-velocity field carrying Coulomb-velocity energy 
and emits a radiation field carrying radiative energy to the 
surrounding space. Specifically, we consider a small part of 
source in the internal region of 1sV  denoted by the red star in 

Fig.1. The radiative fields by the red star source interact with 
other sources in the source region 1sV  when they propagate 

through the source region to the outside space. Part of the 
radiative energy is transferred to the sources they have 
encountered. A nonzero Schott energy appears in this period 
corresponding to energy exchange. Only after they have 
completely left the source region, the radiative fields by the 
red star source can propagate to far region with a constant 
radiative energy, until they reach radiator-2 and interact with 
the sources there. The radiative fields from other sources in 

1sV  experience the similar journey, and carry the radiative 

energy of radiator-1, inducing a real electromagnetic 
radiative power flow.  

On the other hand, the reactive energy of radiator-1 affects 
radiator-2 through mutual coupling. When the reactive 
energy of radiator-1 varies with time, the effect does not 
reach radiator-2 simultaneously. The fluctuation of the 
reactive energy causes a pseudo power flow and travels with 
the real power flow to radiator-2.   

 
Fig.1 Electromagnetic radiation and mutual coupling of two radiators.   
 

Poynting vector represents the total power flow, including 
the real radiative power flow  real

radP t  and the pseudo power 

flow  pseudo
radP t . As shown in Fig.2, the real power flow 

always propagates always from its source, crossing the 
observation surface from left to right. However, the direction 
of the pseudo power flow is reversible. It crosses the 
observation surface from left to right when the reactive 
energy of the source increases, and from right to left when 
the reactive energy decreases.  
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(a)                                    (b) 

Fig.2 Electromagnetic power flow. (a) Direction when the reactive energy 
increases. (b) Direction when the reactive energy decreases. 
 

In the radiation process of a radiator, mutual coupling 
occurs between different part of sources in the same radiator. 
The source distribution is not only dependent on the 
excitations at the feeding port, but also dependent on the 
mutual coupling. The total reactive energy and the total 
radiative energy of the radiator have taken into account all 
these mutual coupling effect. If the radiator contains several 
separated parts, each part may have different types of sources, 
the radiation process can be analyzed in the same way. A 
good example is an antenna array. It can be handled as a 
radiation problem if we take the whole array as a single 
radiator. It is a radiation and mutual coupling problem if we 
want to reveal the mutual couplings among different units of 
the array.  

IV.  RADIATION OF HARMONIC SOURCES 

For harmonic fields with time convention of j te  , the 
radiation is assumed to last temporally from   to  , so 
the radiative energy is infinitely large. The Poynting theorem 
can be applied to describe the balance between the time 
averaged powers and the varying rate of the energies, 

 
1 1

1 1 1
2

2 4 4

1
ˆ

2

s a

a

V V

S

d j d

dS

  



     

 

 



J E r B H E D r

E H n

  


  (37) 

from which the time averaged radiative power at infinity can 
be evaluated with source distributions, 

  1

1 1
ˆRe Re

2 2 s
rad av S V

P dS d


          
    E H n E J r   (38) 

The same symbols are used for the corresponding phasors for 
the sake of simplicity.  

However, the evaluation of the reactive energies in 
conventional formulation requires to subtract the radiative 
energy from the total energy. Since both the energies are 
unbounded, all those formulations based on energy 
subtraction are not always satisfactory.   

With the theory proposed here, the power balance can be 
evaluated within any domain enclosed by an observation 
surface aS  containing the source region sV  ,  

 

*
1 1

1 1
2

4 4

1 1 1
ˆ

2 4 4

s s

a

V V

S

d j d

j dS

  

 

 

  

    
 

          

 



J E r J A r

E H H A D n

 


  (39) 

The time averaged radiative power crossing the observation 
surface can be obtained using the radiative power flux vector 

SradS   or the source distributions,  

   

1

1
ˆRe

2 4

1
Re

2

a

s

rad av S

V

j
P dS

d

   



          
    
 





E H H A D n

J E r






 

 (40) 
Note that, with (40), the observation surface is not required 
to approach infinity for evaluating the radiative power. It can 
be checked that the result is in consistent with that obtained 
using the Poynting vector since it has been proved in [14] 
that 

  
1 1

ˆRe 0
4 4S

j dS 


       
  

 H A D n   (41) 

The time averaged reactive energy can be calculated with the 
fields and the vector potential, 

  * * *1 1 1
Re

4 4 2react av V
W j



      
  

 E D B H D A    (42) 

It is easy to verify that   0S av
W  , so the time averaged 

reactive energy can be alternatively calculated using the 
source-potential products as follows 

   * *
1

1 1
Re

4 4s
react av V

W d      
  

 J A r   (43) 

It can be checked that   0Sij av
W  . Therefore, the time 

averaged mutual coupled reactive electromagnetic energies 
are found to be 

   * *1 1
Re

4 4si

react
i j i j iij av V

dW     
  J A r   (44) 

As expected,    react react
ij jiav av

W W  holds for mutual 

coupling in free space.  

VI.  HERTZIAN DIPOLE 
A Hertzian dipole locating at the origin is analyzed to show 
the energy/power balance relationship. The moment of the 
dipole is assumed to be cosql t , the scalar potential and the 

vector potential of which can be readily derived from the 

Hertzian potential    4 cosql r t kr     [38][41],  

   0 ˆˆsin cos sin
4

ql
t kr

r


  


   A r θ   (45) 

   
2

0
2 2

1 1
cos cos sin

4

ql
t kr t kr

krk r

 
   


      

 (46) 

from which the fields are found to be 

observation surface 

  

  

     
source source 
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 

 

 

 

2

0 2 2

1
cos1

ˆ2cos
sin

14 1 cos
ˆ sin

1
sin

t kr
kr

kr
t kr

k ql

r t kr
k r

t kr
kr






 




    
  

    
            
  

     

r

E

θ

  (47) 

   1
ˆsin sin cos

4

kql
t kr t kr

r kr

   


       
H φ   (48) 

As is known, the Hertzian dipole is a point source and its 
total reactive energy is infinite. A common strategy is to 
evaluate the integrals (8) and (11) in the whole space 
excluding a small sphere with radius a. The results are listed 
below, 

 

 

 

1

3 3 3 3

0

2 2

1 1

2 2

1 1 1 1
cos 2

2
sin 2

a

e
react V V

W t d
t

t ka
ka kak a k a

t ka
k a






 

    
         
 
   


A

D E D r 

 (49) 

 

 

 

1

20

1 1

2 2

2
sin

a

m
react V V

W dt
t

t ka
ka




 

    

 


A

B H D r 
  (50) 

The principal radiative power evaluated at a spherical 
observation surface is  

   0
ˆ 2

a
Srad SradS

P t dS   S n   (51) 

It is a constant value independent of the radius of the sphere, 
clearly indicating that the total radiative power associated 
with  0radW t  crossing any concentric spherical surface is 

the same. 
The surface integral of the Poynting vector on the 

spherical surface aS  is calculated to be 

 

   

 

 

0

3 3

0

2 2

ˆ 2 1 cos 2

2 1
sin 2

2
2

cos 2

a
pv S

P t dS t ka

t ka
ka k a

t ka
k a

 






     

       
 
   

 S n

  (52) 

which varies with the radius of the surface due to the effect 
of the reactive energy. As expected, the time average of

 pvP t  equals that of  SradP t .  

   Since the Hertzian dipole is a point source, its fields 
propagate radially and cross all concentric spherical 
observation surfaces with light velocity. Therefore, the 
radiative energy per unit time near the spherical surface aS  

can be considered as the real radiative power crossing aS ,  

 

a

a cdtreal
rad S a

S

P dt drdSt
t

cdt dS
t

    
 

   
 

 



A
D

A
D




  (53) 

from which the real radiative power is found to be 

    02 1 cos 2real
radP t kat         (54) 

the amplitude of which is not dependent on the radius of the 
observation surface. It is readily to recognize from (52) that 
it is the first term in the Poynting power  pvP t . The other 

terms of  pvP t  in (52) compose the pseudo power flow, 

which decreases with the distance to the dipole.  
The time averaged energies are listed below for readers’ 

reference,  

 
 

 

0

0 3 3

1

1 1

m av

e av

W
ka

W
kak a





      


      

  (55) 

The Q factor of the dipole is then calculated to be 

 
 

  3 3

2 1 1e av

rad av

W
Q

P kak a


     (56) 

which is exactly in agreement with the result shown in [42].  

The well-established equivalent circuit model proposed by 
Chu [39] for Hertzian dipole is shown in Fig.3. Assume that 
the current in the radiation resistor at the interface of r a  

is  0 cosRi I t ka  . The energies stored in the capacitor 

and the inductor can be derived to be 

 

 

 
 

   

3 3 3 32
0

2

2
20

1 1 1 1
cos 2

24 sin 2

1
sin

2

C

L

t ka
ka k a kak aI

W t
t ka

ka

I
W t kat

ka



 




                 
 

       

 (57) 

 
Fig.3 Equivalent circuit model for Hertzian dipole radiation. 

If we choose 2
0 04I  , it can be readily verified that 

   C eW t W t  and    L mW t W t  . This exact agreement 

gives a good support to the proposed theory.  
The integration regions for  radW t ,  0radW t  and  SW t  

are all modified in a similar way. They are found to be 
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   

   

0

0

2 lim

sin 2 limsin 2

a
rad V V r

r

W dV kt r a
t

t ka t kr



 

  




   


     


A

D
 (58) 

                  
 

 

0

0

1

2

2 lim

a
rad V V

r

W dVt
t t

k r a
 



      
 


D A

A D 
   (59) 

 

   0

1

2

sin 2 lim sin 2

a
S V V

r

W dVt
t

t ka t kr 

 



      
      

 D A
  (60) 

With the wave travels to infinity, the principal radiative 
energy  0radW t  monotonically increases with the radius, 
revealing that the radiative rate is always positive. The Schott 
energy  SW t  oscillates in the propagation with a zero 
average value. Its amplitude remains constant in this case. 

VII. Numerical Results 

A. Solenoidal Loop 

The radiation of a solenoidal loop current is analyzed. The 
solenoidal surface current on a ring is described by 

     ,s t I tJ r f r  [A/m], as shown in Fig.4. Here we 

choose 
   ˆ1.0f r   (61) 

The inner and outer radius of the ring is 0.08m and 0.1m, 
respectively. The temporal function is a modulated Gaussian 
pulse, 

  
2

sin ,      0

0,                  else

e t t T
I t

    


  (62) 

with 102 10   ,  2 5 0.5t T T   , and 1nsT  . 

Therefore, both its initial and final reactive energy are zero. 
Two spherical surfaces with radius of 0.2m and 10m are 
chosen as the observation surfaces, with their centers 
coinciding with that of the source. They are labeled by 
sphere-1 and sphere-2, respectively. The principal radiative 
energy passing through sphere-1 and sphere-2 are calculated 
with integration of  SradP t  , as expressed in (32).  pvW t   

is the integration of the Poynting vector power passing 
through the observation surface,  

     1 10 0 1,2
ˆ,

t t

pv Spv sphere
W t P d d d   


     S r n r   (63) 

 
Fig. 4 Solenoidal loop current. 

The excitation energy, the principal radiative energy and 
the energy evaluated with Poynting vector are shown in Fig. 
5(a). In this case, the reactive energy includes the 
contribution from the current alone since the current is 
solenoidal and its corresponding charge is zero, so it is 
denoted as JW  in the figures. JW  oscillates with the source 

and admits negative values periodically. It is acceptable 
because the reactive energy is dependent on the potentials, 
which are values relative to their reference zero points. When 
the current varies and changes its direction periodically, the 
retarded vector potential in the source region lags behind and 
may point in direction opposite to that of the current, causing 
negative values. Note that the Schott energy in the charged 
particle theory may also be negative [20][43]. The Schott 
energy is plotted in Fig.5(a) as well, and is zoomed-in in 
Fig.5(b) together with JW . It can be seen that the Schott 

energy oscillates like JW  but continues to exist for about 

0.33ns after the source has disappeared at 1ns.  
The energies passing through sphere-1 are shown in Fig. 

5(c). The smallest and the largest distance between the 
source and sphere-1 are respectively 0.1m and 0.3m. The 
total radiative energy passing through sphere-1 at t=2ns is 
equal to that evaluated at the source region.   

The excitation power, the principal radiative power and 
the time varying rate of the reactive energy are shown in Fig. 
6(a). The powers crossing sphere-1 and sphere-2 are shown 
in Fig.6(b) and (c), respectively.  SradP t  varies smoothly 

and remains positive. The Poynting power contains ripples 
coming from  SreactP t , which gradually decreases with the 

propagation distance. 

 
(a) 

x 

y 

o 
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(b) 

 
(c) 

Fig.5 The energies of the loop current. (a) The energies evaluated in the 

source region. (b) The zoom-in figure for JW  and SW . (c) The energies 

crossing sphere-1. 

 

(a) 

 
(b) 

 
(c) 

Fig.6 The powers of the loop current. (a) The powers evaluated in the source 
region. (b) The powers crossing sphere-1. (c) The powers crossing sphere-
2. 

B. Thin Plate Yagi Antenna 

The geometrical structure and parameters of the Yagi 
antenna is shown in Fig.7. It consists of 3 PEC plates with 
zero thickness: a dipole in the middle, a reflector in the left 
and a director in the right. The width of the plate is 2mm. 
The dipole is fed at its center with a Delta-gap voltage source 
of  

     1.0sin , 0VfeedV tt t    (64) 

where 82 1.5 10    , corresponding to 150MHz.  
 

 
Fig.7 Thin plate Yagi antenna with 3 PEC plates. 

The first step is to calculate the surface current by solving 
the surface electric field integral equation (EFIE) with 
marching-on in time scheme (MOT) [40][44]. The plates are 
triangularly meshed, and the surface current is expanded 

Feed 1.09m 0.903m 1m 

0.498m 0.249m 
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with RWG basis functions [45]. There are 53, 59, and 50 
RWGs on the left, middle and right plate, respectively. The 
Delt-gap voltage feeding is put on the common edge of the 
RWG in the middle of the dipole. The time step of the MOT 
is 2.67ps. The second step is to evaluate the energies and 
powers using the obtained surface currents and the 
expressions we have proposed. When calculating the Schott 
energy and the principle radiative energy, the integration 
interval of the innermost integral is dependent on the 
distance between two points. It may become much smaller 
than the time step and should be handled carefully to get 
satisfactory numerical accuracy. For 0ijr  , we can use the 

L’Hospital rule to find the limit of the innermost integral. 

The principal radiative powers of the 3 plates are 
calculated separately with (33), with the integration domain 
respectively replaced by those of the three plates. The results 
are shown in Fig.8. The Coulomb-velocity energies are 
shown in Fig.9. As shown in the figures, the principal 
radiative power of the dipole is always positive. It radiates 
electromagnetic energy to the space from the beginning. 
However, the principal radiative powers of the reflector and 
the director are negative at the beginning, which means that 
they absorb energy from the dipole to generate reactive 
energy at the transition stage. When the radiation enters the 
steady state, the reactive energies tend to become steady 
stable. Since the PEC reflector and the PEC director are 
passive elements, they do not radiate by themself, but only 
scatter all the electromagnetic energies they received. 
Consequently, their principal radiative powers are zero at the 
steady state.  

 
Fig.8 The principal radiative power passing through the surface of each plate. 

 
Fig.9 The Coulomb-velocity energy of each plate. 

The total energies are plotted in Fig.10. After a short 
transition stage, the radiation approaches steady state. It can 
be seen that the Schott energy gradually becomes an 
oscillation with approximately uniform amplitude and the 
same period of the excitation. It brings equiripples to the total 
reactive energy and the total radiative energy. The total 
reactive energy tends to become steady and bounded, while 
the radiative energy increases approximately in a linear way.  

 
Fig.10 The total energies of the Yagi antenna. 

The principal radiative power and the electromagnetic 
power calculated with Poynting vector are evaluated on an 
observation spherical surface with radius of 2m, the center 
of which locates at the feeding point of the Yagi antenna. The 
results are illustrated in Fig.11.   

 
Fig.11 Electromagnetic powers passing through the observation surface. 
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The directivity of the antenna inevitably varies in the 
transition stage. The directivity patterns in the E-plane and 
the H-plane at 10ns, 20ns, and 40ns are depicted in Fig.12. 
As can be seen, in the beginning, the passive reflector and 
the director absorb more electromagnetic energies than the 
energies they received. The radiation is mainly determined 
by the center dipole, and the pattern is much like that of a 
single dipole.  The antenna performs like a Yagi antenna only 
after the two passive plates have achieved a balance between 
their absorbed and scattered powers.  

In the steady state, we can evaluate the Q factor of the 
radiator with formula as follows 

  
 
 0

2 J

Srad

W t
Q t

T P t


   (65) 

For comparison, the Q factor for 0.15t s is calculated to 

be 18.5, while the Q factor obtained with the frequency 
domain formulation described in [15] is 17.5 at 150MHz.  

 
(a) 

 
(b) 

Fig.12 Evolution of the radiation pattern. (a) E-plane. (b) H-plane.  

VIII. CONCLUSION AND DISCUSSIONS 
Some issues concerning with the electromagnetic radiation 
and mutual couplings remain ambiguous or even 
controversial for decades long, especially the definitions for 
the reactive energy. This theory proposed clear definitions 
and explicit expressions for the reactive energy and the 

radiative energy of a radiator. The introduction of the 
macroscopic Schott energy makes it possible to separate the 
radiative energy and the reactive energy in a reasonable 
manner. Consequently, a new form of power balance 
equation is given based on the Poynting relation so that the 
Poynting vector is divided into two parts, respectively 
accounting for the contribution from the radiative energy 
propagation and the fluctuation of the reactive energy. The 
newly defined principal reactive energy  0radW t  and its 

flux, the principal radiative power  SradP t , can characterize 

the main property of the radiative energy. Furthermore, they 
can be numerically evaluated more efficiently, so are the 
mutual electromagnetic coupling energies defined with 
potentials.   

 As is pointed out in the introduction, the main problem of 
the issue is how to separate the radiative energy and the 
reactive energy. We began with the hypothesis that the 
reactive energy performs like the Coulomb-velocity energy. 
This provides us a clue and starting base to separate the 
electromagnetic energy into three parts, namely, the 
Coulomb-velocity energy  JW t , the macroscopic Schott 

energy  SW t , and the radiative energy  radW t . Then we 

derived the explicit and accurate expressions for them and 
verified that with a pulse radiator. All the expressions are 
strictly derived from Maxwell equations with no 
approximations. Retarded time is included in them and they 
are no static limit although they may look alike at a first 
glance.  

 The basic theory is for time varying pulse radiators. We 
also provided formulae for harmonic waves. Unlike 
Vandenbosch formulation in which the results obtained with 
time domain formulation sometimes may not agree with the 
results obtained with the frequency domain formulation, in 
the theory proposed here, the results in time domain and 
frequency domain are completely in consistent because they 
are respectively directly derived from the time domain 
Maxwell equations and the frequency domain Maxwell 
equations. The electromagnetic fields in frequency domain 
and time domain can be converted with Fourier Transform, 
which is a common sense in computational electromagnetics.  

It has been discussed in previous sections that the 
electromagnetic radiation and mutual coupling issue are 
closely related and can be handled in the same manner. If let 
i j  in (34) and (36), we get (18) and (20), which are the 

expressions for a single radiator. The terms in these 
expressions are all dot-products of two vectors: those at the 
right side are potentials, and those at the left side are source 
densities or their fields. In systems with electromagnetic 
mutual couplings, the potentials are associated with the 
radiators that impose the couplings, while the left quantities 
are associated with the radiators affected by the couplings.  

The theory is completely different from the Carpenter 
formulation [24]. In Carpenter formulation, it was proposed 
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to use the Coulomb-velocity energy alone as the total 
electromagnetic energy and to replace the Poynting Theorem 
with a new equation. The formulation, as well as the power 
flow vector J  by Slepian [46], was pointed out to be 

mathematically flawed by Dr. Endean [47]. In our theory, we 
combine the Coulomb-velocity energy and the Schott energy 
together to form the reactive energy. The theory does not 
suffer from the mathematical flaw since there is no 
modification to the total electromagnetic energy and the 
Poynting Theorem. 

APPENDIX 
Equation (17) and (24) can be obtained using the method 
given in [6]. It is required to evaluate the following key 
integral associated with two source point 1r  and 2r ,  

 

   
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1 1 2 2
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1 1 2 22
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

r

r
  (66) 

where 1,2 1,2t t   , 1,21,2R  r r  . The value of the integral 

has been given in the equation (32) in [6]. Here we provide 
an alternative rigorous proof. In the spherical coordinates, 
choose 1r  as the origin, and put 2r  on +z axis. Therefore, we 

can write 2 21 ˆrr z , 1R r r , and 

2 2
2 21 212 2 cosR r rr r   r r . 

Since the integrand is symmetric, we have 
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  (67) 

where 2 1 21 2 cosdR c r R d    is used. The integration 

range of  1 2,   for nonzero I is determined by 

 2 1 211 21 c c rc r        (68) 

which is exactly the same as eq. (33) in [6]. 
Next, we take the first term of  SW t  as an example to 

show the derivation of (17). Rearranging the integration 
order gives 
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Making use of the identity  1 2 1 21 2G G G GG G     and

 1 1 1 1 1 1 1 1 1 1 1G G G G      J J J J    , and ignoring the 

surface integrals at S , we get  
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Performing the double integration  1 2dt dt   on the region 

limited by (68), and dividing the inner integration into three 
sub-regions gives 
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Replacing 1t  by   and evaluating the second term in a 

similar way we can get (17). The nonzero range can be 
determined by noting that the sources exist within  0,T  and 

at least one of the source terms is zero for 21,max 2t T r c  .  
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