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Abstract—Physically unclonable functions (PUFs) are circuit
primitives that offer a promising and cost-effective solution
for various security applications, such as integrated circuits
(IC) counterfeiting, secret key generation, and lightweight
authentication. PUFs leverage semiconducting variations of ICs
to extract intrinsic responses based on applied challenges,
establishing unique challenge-response pairs (CRPs) for each
device. The security analysis of PUFs is crucial to identify the
device weaknesses and ensure response integrity. Accordingly,
CRP-based examination plays a major role in defining the
resistivity of the block against general and modeling-based
attacks. Such analysis requires an updated and representative
dataset for training and evaluation. However, there is a lack of
benchmark datasets for assessing the effectiveness and resistance
of PUF devices. Motivated by this, in this work, we generate a
dataset of 300K CRPs for a digital-based PUF implemented on
a field programmable gate array (FPGA). The dataset provides
a significant number of CRPs for a multi-bit response, where
the spatial and temporal adjacency are implicitly defined in the
extracted CRPs. Moreover, we investigate different approaches
utilizing the generated dataset such as machine learning-based
modeling, correlation analysis, and entropy analysis. The CRPs
are employed to train linear and nonlinear Support Vector
Machine (SVM) models, and the prediction accuracy of SVM
models is used as an indicator of the PUF’s vulnerability to
modeling attacks. As the prediction accuracy does not exceed
65% over 10K CRPs, the extracted dataset sufficiently verifies
the resiliency of the device against ML-based modeling attacks.
Additionally, Pearson’s coefficient is computed on a 10 K-bit
vector to determine the correlation between the bits of the
response. The calculations expose some correlations between
±0.25, which warns from potential threads. Finally, the paper
discusses some potential future research directions and challenges
that are envisioned to enhance the security performance of PUFs.

Index Terms—Correlation, CRPs, entropy, FPGA, machine
learning, modeling, PUF, RO, security analysis

I. INTRODUCTION

The Internet of Things (IoT) plays a vital role in diverse
applications, by enabling seamless connectivity and efficient

E. Abulibdeh, H. Saleh, B. Mohammed, and M. Al-Qutayri are with the
System on Chip Lab, Electrical Engineering and Computer Science, Khalifa
University, Abu Dhabi 127788, UAE, (e-mails:{100059804, hani.saleh,
baker.mohammad, mahmoud.alqutayri} @ku.ac.ae)

S. Naser is with the Center for Cyber-Physical Systems, Department of
Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi
127788, UAE, (e-mail:shimaa.naser@ku.ac.ae).

S. Muhaidat is with the Center for Cyber-Physical Systems, Department
of Electrical Engineering and Computer Science, Khalifa University, Abu
Dhabi 127788, UAE, and also with the Department of Systems and Computer
Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada, (e-mail:
muhaidat@ieee.org).

data transfer allowing for chanced operational efficiency and
efficient decision-making. The exchange of information in
the IoT ecosystem encompasses a vast array of information,
including users’ locations, vital signs of the human body,
and the realm of autonomous vehicles, to mention just
a few instances. Nevertheless, due to the broadcasting
nature of the Wireless links, they are subject to various
forms of attacks. According to Kaspersky, 1.51 billion IoT
breaches were reported in the first half of 2021. Although
conventional cryptography-based approaches have gained
significant popularity for ensuring secure data communication
and authentication, their integration with resource-limited IoT
devices poses a major challenge. The complexity associated
with these sophisticated schemes tends to drain the limited
resources of IoT devices. Hence, it has become imperative to
address this issue by exploring alternative lightweight security
solutions. In this regard, physical unclonable function (PUF) is
envisioned as a promising security paradigm that supports low-
cost authentication protocols and key generation and protects
integrated circuits (ICs) from counterfeiting [1]. PUF has
merged as a low-cost security primitive that eliminates the
need for intricate key generation processes and secure storage
of sensitive information. Recently, different commercial
systems have adopted PUF as an integral component
of their security architecture. For instance, Silicon Labs
seamlessly integrates PUF technology with advanced security
software functionalities in their Wireless Gecko Series 2
platform. Similarly, Maxim comprises PUF in the MAX32520
ChipDNA Secure ARM Cortex M4 microcontroller, which
delivers multi-level protection.
Conceptually, a PUF device exploits the variation of the
physical characteristics of the underlying hardware such
as wire connections. More specifically, the PUF utilizes a
designated input known as the challenge C to define the
physical properties. Due to its unique nature, PUF produces
a distinct and unpredictable output known as the response
R. It is worth noting that R varies from one device to
another as shown in Fig. 1. Thus, by applying the same
challenge C to three PUF devices X, Y, and Z, three different
responses are produced, namely RY, RX, and RZ, respectively.
Intrinsic electronic PUF or Silicon PUF (SPUF) utilizes the
process variations of ICs. For instance, the ring oscillator
PUF (ROPUF) is a delay-based SPUF that evaluates the delay
between two ROs that incorporate logic gates and wires.
Nevertheless, the set of challenge-response pairs (CRPs) of
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Fig. 1: The uniqueness characteristic of PUF response over
different devices of the same architecture, where RX ̸= RY ̸=
RZ.

a particular PUF device is susceptible to direct or indirect
access by intruders who acquire the capability to clone the
PUF device through the application of machine learning (ML)
algorithms. This allows them to construct a model that can
effectively forecast the PUF’s responses with high accuracy.
Therefore, it is of paramount importance for PUF designers
to study the security vulnerabilities of the PUFs to develop
more robust designs. In this regard, the CRP dataset serves
as a valuable tool for researchers to study the characteristics
of PUFs and to develop tools to improve their security and
robustness. Security analysis is another important tool that
involves evaluating the resilience of PUF against different
attacks. It is worth mentioning that PUF security analysis
involves comprehensive tests and evaluations that identify
PUFs’ vulnerabilities and potential threats. A set of approaches
for the analysis utilizes the CRPs dataset to mathematically
or experimentally model the PUF’s function such a security
analysis requires an updated and representative dataset for
training and evaluation. However, the scarcity of benchmark
datasets for assessing the effectiveness and resistance of
PUF devices poses a significant challenge. In the following
subsection, we overview and discuss some of the available
PUF datasets and their limitations.

II. RELATED WORKS

The diversity of PUF architectures and their sources of
randomness amplifies the importance of CRPs as they are
used to validate the device and assess its security level. The
Hybrid Boolean Networks (HBN)-based PUF [2] utilized BN
as the source of the device’s randomness, which overcomes
the limitations of traditional physical properties such as gate
delay. The resilience of the HBN PUF to ML-modeling attacks
was verified using 1K CRPs. Similarly, Y. Jiang [3] enhanced
the security of PUFs by improving the complexity of their
structures. 65K records with a 40-bit challenge and 1-bit
response each were used to rigorously analyze RO PUF with
an additional modulus process [3]. Hu et al. [4] and Aghaie
et al. [5] investigated the impact of system characteristics
on the vulnerability of PUFs to ML-based modeling attacks.

Additionally, Aghaie et al. [5] compared the performance of
ML models based on simulated or actual CRPs. 65K CRPs
were collected from the design [4], and obtained by running
RO for 15.729ms. On the other hand, Aghaie et al. [5]
extracted 1M CRPs from the Interpose PUF, where a 64-bit
challenge was applied to produce a 1-bit response. Mursi et al.
[6] proposed and implemented an XOR-based PUF on Artix®-
7. The circuit elements were vertically placed, and a single-
bit response was generated by applying a 64-bit challenge to
collect 5M CRPs. Motivated by the above, this study presents
the experimental methodology for extracting the CRPs dataset
from an FPGA-based ROPUF. The extracted dataset consists
of 300K records and is provided as part of this work. The
dataset is relatively large for a multi-bit response, in which the
physical proximity and the conical generation are implicitly
defined. Table I presents a comparison between the dataset
provided in this study and those published in the literature.

TABLE I: The state-of-art published dataset and this work
dataset.

[2] [6] [5] [4] This
Work

Structure HBN XOR RO RO RO
CRPs Size (K) 1 5K 65 4 300
Challenge Length (bit) 256 64 40 40 32
Response Length (bit) 256 1 1 1 16
Generation Time (ms) 10-6 - - 15.7 10-5

The paper also proposes various practical approaches
to assess the security of the PUF device, including ML-
based modeling, correlation analysis, and entropy analysis.
Furthermore, two specific approaches are implemented and
applied to the collected dataset.

III. DATASET GENERATION

The dataset generation involves designing and implementing
the platform and then introducing efficient data-driven
approaches for data collection.

A. Testing Platform

The testbed aims to extract a multi-bit RO-based PUF
response implemented on an FPGA board. The PUF’s logic
was accurately placed to avoid any bias by the topology
variation as shown in Fig. 2. In specific, two ROs are placed
vertically (yellow and pink) where the delay unit is constructed
from four look-up tables (LUTs) and occupied by one FPGA
slice (left). To facilitate challenge application and response
collection, an AXI interface is attached to the PUF block and
managed and accessed by the FPGA processor, Microblaze.
FPGA communicates with the PC using a serial-parallel UART
interface as shown in Fig. 3a. The implementation of the PUF,
IPs connection, and bitstream generation are performed by
Vivado 2019.2. Additionally, the Microblaze is programmed
using Vitis 2022, which forwards the sent challenge to the
PUF and returns the corresponding response to the PC. Finally,
MATLAB R2022b is used to develop a program on the PC’s
edge that generates the challenge, sends it to the FPGA
through UART, and receives the response through UART. It
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Fig. 2: The FPGA placement of a delay unit in one slice (left)
and the vertical placement of two ROs (right).

is worth mentioning that we have generated the challenge
randomly from a normal distribution. Fig. 3b displays the
great setup of the experiment components, which shows FPGA
connected via UART cable to PC/USB port. MATLAB is
running on a PC to manage the interfacing process.

B. Data Generation

The dataset consists of 300K CRPs stored in two text
files: the challenge file and the response file. The data in
both files are aligned at the same offset, meaning that the
corresponding entries in each file are related. For instance, the
first line in the response file corresponds to the 16-bit response
obtained when applying the challenge from the first line of
the challenge file to the PUF. The challenge and response are
stored in hexadecimal format, with each representing a 32-
bit string (8 hexadecimal digits). However, since the collected
response is 16 bits, the most significant 16 bits are set to
zero or cleared. The adjacent bits in the response string are
generated by identical circuit elements that are physically
arranged in the same order in the target hardware. For example,
the physical displacement between the first and fourth bits
is three RO circuits. Each circuit loop in the RO PUF is
vertically positioned over FPGA resources, with the adjacent
loop placed at a horizontal offset. The CRPs are generated
sequentially with an interleaving period of 10 ns at the circuit
level. However, due to the communication between the FPGA
and PC, there is an additional introduced delay.

IV. SECURITY ANALYSIS

CRPs represent valuable resources for professionals to
improve the security evaluation metrics of PUFs. In this
context, examination methods concentrate on various aspects
such as approaches that involve investigating the relationships
between challenges and responses, often utilizing ML-
based modeling techniques. Alternatively, some methods
explore the correlations among the responses themselves.

(a) The testbed architecture, which includes PC and FPGA. FPGA runs
and manages PUF block using the controller. At the same time, PC
sends the challenge and receives the response of PUF to/from FPGA
using a serial-parallel interface.

(b) The actual setup of the testing platform. PC is running MATLAB
code that continuously generates the challenge and receives the
response. The programmed Microblaze on FPGA applies the challenge
on the PUF and collects the response.

Fig. 3: The platform setup of CRPs extraction from FPGA-
based PUF.

Other approaches have focused on analyzing the hardware
capabilities and the implemented architecture to extract
random responses, such as through entropy analysis. This
study explores ML-based modeling, correlation, and entropy
analysis as methodologies for effectively utilizing the dataset.

A. Machine Learning-Based Modeling
The behavior of the PUFs can be effectively represented

through a set of collected CRPs [7]. This modeling approach
does not require any auxiliary information and solely relies
on computations performed on the CRPs themselves [8]. As
a consequence, PUFs are susceptible to ML-based attacks
[9], especially when CRPs are accessible outside the chip
without any protection mechanisms in place. Constructed PUF
models can take the form of numerical models derived from
collected data or ML models trained on a sufficient number
of CRPs [10]. The efficiency and simplicity of ML models
present a significant threat to PUFs, making them vulnerable
to ML-based modeling attacks. In the literature, various ML
algorithms have been employed to predict PUF responses,
including Decision Tree (DT), Random Forest (RF), Logistic
Regression (LR), K Nearest Neighbor (KNN), Support Vector
Machine (SVM), kernel-based SVM, Evolutionary Strategies
(ES), and Neural Network (NNet), with LR, SVM, and NNet
showing dominant performance [8]–[10].
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To assess the security of a PUF device, its resistance
against ML-based modeling attacks is often considered. In
this regard, SVM is a widely employed ML model in the
literature. Additionally, the linear behavior exhibited by the
delay-based PUFs is a suitable fit for SVM. Therefore, SVM
with two kernels (linear and radial basis function) has been
utilized in the present study. SVM is trained on 80% of the
CRPs to independently predict the ninth bit of the response.
The models are then trained and tested over 500, 1K, 5K,
and 10K CRPs, as shown in Fig. 4. It can be observed
from the figure that on average, the response bit can be
predicted with 65% accuracy using the non-linear kernel of
SVM and 57% accuracy using the linear kernel. Hence, to
predict multiple bits, an SVM model can be constructed for
each bit individually. The prediction accuracy indicates the
immunity of the attacked bit as a higher prediction accuracy
implies that the bit is breakable by ML attacks, which partially
reveals the true response. The rest of the response can be easily
predicted with a brute-force attack.

Fig. 4: The prediction accuracy of the ninth bit of the PUF
response utilizing SVM model with two kernels: linear and
nonlinear.

B. Correlation Analysis

Various architectures, sources, and types of PUF devices
have been proposed in the literature. As a result, PUF cells
exhibit similarities due to spatial distribution, shared hardware
elements, and sequential generation [11]. Consequently,
conducting correlation tests between different variables proves
to be a valuable tool for evaluating the degree of similarity or
correlation between them. This is vital since if a subset of the
correlated secret bits is exposed, an attacker can potentially
predict the remaining ones. Generally, the Pearson correlation
test is utilized to assess the relationship between two variables.
The Pearson coefficient (r) is described by Fig. 5a. where
n denotes the number of involved CRPs, x and y are the
binary series of the compared bits, xi and yi are the bit
values at offset i in both x and y vectors. It is important
to highlight that the Pearson coefficient (r) ranges between
-1 and 1. When r = −1, it indicates a strong negative
relationship between the two variables, while a value of
r = +1 indicates a strong positive relationship. Finally, if
r = 0, it implies that the two variables are uncorrelated. Based

(a) The mathematical model of Pearson coefficient.

(b) Person correlation coefficient of 16 response bits, where each bit is
presented by a binary vector of length 10K. The results show a slight
correlation between spatial neighbors.

Fig. 5: The theoretical model of the Person coefficient and the
associated values computed from the dataset.

on this, the correlation matrix is constructed for the given
dataset based on the Pearson coefficient which is illustrated
in Fig. 5b. The intersection of the row and column indicates
the correlation coefficient between the corresponding bits of
the PUF’s response. The color of the matrix’s cell reflects
the correlation factor of intersected bits, while the main
diagonal represents the correlation of each bit with itself. As
the correlation coefficient is observed, the light red (or blue)
implies that the coefficient is around ±0.25, which means the
neighbor bits are correlated due to the physical adjacency of
their circuit elements.

Building upon prior analysis, the correlation may exist
if the generators are physically placed close to each other,
which called spatial correlation. Similarly, the successive
generations of the response utilizing the same hardware may
introduce temporal correlation. Spatial correlation measures
the relationship between two variables at different points in
space. On the other hand, temporal correlation measures the
relationship between two variables at different points in time.
Spatial and temporal correlations emerge as distinct forms of
correlation that encompass specific dimensions. The adjacency
of the circuitry components of PUF cells may show similarities
in the response bits. Moran’s I, Geary’s c, and Joint Count
Statistic are the statistical tests that are suggested by W.
Florian et al. [11] to conclude that the variables observed
at one location are dependent or independent of the values
of the same variable at neighboring locations. The relations



5

between the output stream and the previous strings can also
be investigated. Recurrent Neural Network along with Long-
Short Term Memory (LSTM) and Transformer are suggested
to analyze any temporal correlation. Such models accept M-bit
response during the training phase and are used to predict xM
bits. The value of x reflects the degree of correlation, where
∼ 0% implies no relation and ∼ 100% are highly correlated.

C. Entropy Analysis

Entropy serves as an indicator of the information
contained within a PUF device. PUF structures with high
entropy exhibit resistance against modeling-based attacks,
including mathematical and ML-based modeling attacks.
Evaluating entropy statistically involves employing various
tests such as Shannon entropy, MinEntropy, conditional
MinEntropy, Interchip hamming distance, and National
Institute of Standards and Technology (NIST) tests. Context-
tree weighting (CTW) and its variations [12] estimate the
upper bound of the entropy that can be delivered by the device.
CTW assumes that the generation of a binary string relies on
a substring of length D, known as the context length. Thus,
CTW represents PUF responses as a tree with a maximum
depth of D, where any subsequence generates a graph of
length l with l < D. The leaves of the tree correspond to
all possible contexts present in the dataset, and their weighted
probabilities can be computed based on the dataset. In this
model, the edges of the tree represent the potential transitions
from one symbol to another, forming substrings of length
l. The probabilities associated with these transitions can be
calculated within the CTW framework. By employing CTW,
it becomes possible to capture the statistical dependencies and
structure within PUF responses, enabling the estimation of the
maximum achievable entropy.

V. RESEARCH DIRECTIONS

Performing security analysis based on CRPs is crucial for
validating the usage of PUFs. However, certain obstacles
hinder the effectiveness of their applications, including the
lack of generalization, biasing effects, limited availability, and
post-quantum analysis.

A. Lack of Generalization

The set of CRPs serves as a unique identifier for a
specific PUF device and significantly influences the associated
mathematical or empirical models. Consequently, these models
cannot be easily generalized or applied to other PUF devices
of the same architecture. Such challenge arises when analyzing
strong PUFs that possess a large number of CRPs per
device, sometimes reaching tens of millions. Developing a
comprehensive and accurate model that encompasses the
behavior of multiple devices into a single model becomes a
complex task, and achieving convergence becomes uncertain.
Addressing this challenge requires careful consideration
of the device-specific characteristics and appropriate data
analysis techniques such as data fusion, normalization, and
augmentation. Furthermore, Ensemble Learning is a potential

technique for handling this challenge by combining the
predictions of multiple models with the aim to provide more
generalized and accurate predictions.

B. Biasing Effect
The extraction mechanisms and architectures of PUFs are

designed with the aim of minimizing bias effects. However,
since PUFs rely on uncontrollable physical quantities for
generating responses, there is a possibility of biases in the
output. These biases can reduce the efficiency of utilizing
PUFs’ CRPs. To ensure a more balanced and uniform
distribution of the output, post-extraction processes are
necessary. In this regard, addressing the bias effects by
performing post-processing on the extracted PUF responses
is of significant importance. This involves excluding low-
confidence bits, which are more likely to be affected by biases
[13]. Another technique that can be employed is temporal
majority voting (TMV). In TMV, the PUF is sampled multiple
times, and the response that appears most frequently among
the samples is considered the true response [14]. This approach
leverages the redundancy in the PUF output to mitigate the
influence of biases. By selecting the majority response, the
impact of biased samples can be reduced, leading to more
accurate and reliable results. On the other hand, permutation-
based approaches can also be utilized to counteract bias
effects. These approaches involve applying permutations to the
challenge as a pre-process and/or to the response as a post-
process. By shuffling the order of the challenges or responses,
the biases that might be present in specific positions are spread
out and randomized. This helps to decrease the influence of
biasing and enhance the overall robustness of the PUF.

C. CRPs Availability
To produce accurate PUF ML models, a minimum number

of CRPs is required, this is vital since the size of the required
dataset is proportional to the PUF complexity. Nonetheless, the
representative dataset is usually scarce, whilst the collection
process is expensive, involves sharing privacy-critical data, or
is subjected to authorities’ consent. Therefore, it is vital to
develop techniques that enrich the network with high-quality
CRPs datasets for improving the training process of the ML
models. Additionally, the age effects of PUF devices limit
the validity of the model usage over time. To address these
two problems, Transfer Learning (TL) is characterized by
significant benefits that avoid the retraining overhead in case
of sudden and fast network and environmental variations. In
specific, transfer learning allows trained models for certain
tasks under specific network and environmental conditions to
be utilized as a starting point for the new task, which alleviates
the need to train ML models from scratch for new unseen data.
Thus, pre-trained models from one PUF can be transferred to
a new PUF with the same structure. Yet, the pre-trained model
should be trained and configured on a large dataset. To tackle
this issue, Generative Adversarial Networks (GANs), which
are deep learning models, can be utilized to generate synthetic
CRPs by learning the underlying patterns and characteristics
of the available CRPs Hence, generative-based mechanisms
can be applied, when pre-trained models are unavailable.
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D. Post-Quantum Analysis

The computational complexity of a mathematical model
of a PUF device can be reduced by quantum systems and
algorithms. Hence, the quantum analysis ensures the resiliency
of PUF’s responses against quantum attacks. Fuzzy extractors
are cryptographic models that guarantee the integrity of PUF
responses and can be used to define a secure PUF against
quantum attacks [15].

VI. CONCLUSION

Security analysis of PUFs’ devices requires an updated
and representative CRPs dataset for training and evaluation.
However, there is a lack of benchmark datasets for assessing
the effectiveness and resistance of PUF devices. Therefore,
in this work, we have presented an experimental setup to
extract a set of CRPs for FPGA-based PUF. Specifically,
300K CRPs have been collected and suggested to be used
by a set of security-based evaluation metrics: ML-based
modeling, correlation, and entropy analysis. To study ML-
based modeling and correlation, SVM modeling and Pearson
correlation have been utilized, respectively. The obtained
prediction accuracy of SVM models and the small correlations
observed in adjacent bits highlight the significance of CRPs-
based security analysis. Finally, we highlighted some potential
future research directions and challenges that need to be
carefully considered to improve the effectiveness of security
analysis based on PUFs’ CRPs.
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