
Comparing Concepts of Service Blocking Queues in
Hardware-in-the-Loop Systems

Tobias Konheiser
Test System Development

ZF Mobility Solutions GmbH
Ingolstadt, Germany

tobias.konheiser@zf.com

Christoph Funda
Test System Development

ZF Mobility Solutions GmbH
Ingolstadt, Germany

christoph.funda@zf.com

Reinhard German
Department Computer Science 7

Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany

reinhard.german@fau.de

Kai-Steffen Hielscher
Department Computer Science 7

Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany

kai-steffen.hielscher@fau.de

Abstract—ZF is developing an autonomous driving system,
which requires extensive testing of the developed devices and
software on hardware-in-the-loop (HIL) systems. Therefore, a
robust and high-performing HIL system is essential. The purpose
of a HIL system is to replay recorded data to the device-
under-test. Recordings are loaded, processed and streamed to
the device-under-test with real-time requirements. This streaming
chain includes processing nodes and queues. This requires careful
management of queue configurations. An overflow in the queue
will result in packet loss, while an underflow may violate the
real-time constraint.

This study aims to develop and evaluate concepts for service
blocking queues. These concepts block or pause the incoming
service to a queue when necessary to avoid queue overflows
and associated data loss. However, an out-of-the-box solution is
not available and different approaches affect the behaviour and
performance of the system. Therefore, the developed concepts
are evaluated against each other and against the existing system
based on selected performance parameters in specific scenarios.
The scenarios cover a wide range of situations, reflecting stan-
dard input data with varying numbers of parallel streams and
bottleneck scenarios forcing queue overflows or blockages.

The developed service blocking queue concepts eliminate data
loss in all scenarios, but introduce overhead, resulting in reduced
system performance. However, the service blocking queue concept
using a modified token-bucket approach proved to be the best
solution, as the elimination of data loss justifies the additional
overhead. This concept is proposed for implementation and
deployment on the HIL system.

Index Terms—robot operating system, performance evaluation,
queueing, hardware-in-the-loop

LIST OF ACRONYMS

CAN Controller Area Network
CPU Central Processing Unit
DUT Device Under Test
FIFO First-In-First-Out
HIL Hardware-in-the-Loop
KPI Key Performance Indicator
LV LabVIEW

Supported by ZF Friedrichshafen AG.

NC Network Calculus
RAM Random Access Memory
ROS Robot Operating System
TCP Transmission Control Protocol

I. INTRODUCTION

Complex computer systems need validation, especially in
safety-critical areas of application such as autonomous driving.
In order to validate the developed control devices, Hardware-
in-the-Loop (HIL) systems are commonly used. Therefore, an
appropriate HIL system must be developed, which streams
recorded data to a Device Under Test (DUT). Due to real
time requirements, the HIL system needs to provide high
data throughput and reliability. Once a solid foundation for
a HIL system is developed, more edge cases need to be
analysed to improve the system. Data loss in the HIL streaming
chain is a worst-case scenario in the validation process for
electronic devices and must be eliminated in the HIL streaming
chain. Not only can data loss require the repetition of a test
run, it can also cause inaccurate or wrong results. The HIL
system under development consists of three main components,
where data loss may occur. The first part is a streaming
chain implemented in the Robot Operating System (ROS).
The second part is implemented in LabVIEW (LV). Both
components are connected by a Transmission Control Protocol
(TCP) connection specified in [1].

The TCP algorithm includes a data loss prevention mech-
anism, and such a mechanism can easily be realised in LV.
Therefore, the ROS streaming chain is the only part where data
loss can occur in the system under study, where no solution
is available.

In this work, we propose, implement and evaluate the
performance of different data loss prevention mechanisms in
ROS. The service-blocking-queue concepts address the issue
of data loss. This work explains the relevant fundamentals for
the service blocking queue concepts, followed by a detailed
analysis of different concept approaches. The work concludes



with an evaluation of the results using important Key Perfor-
mance Indicators (KPIs).

Special requirements need to be fulfilled by those concepts.
The main goal is to eliminate data loss in every scenario.
Simultaneously, the performance of the HIL system must be
ensured, and the designed concepts must not be prone to errors
during implementation and deployment.

II. METHODS

A. HIL System

”Hardware-in-the-loop system is a non-intrusive test ap-
proach, containing physical controller connected in open- or
closed-loop with virtual or semi-virtual subsystems, providing
faithful physical replicas of the real world and evaluating the
System under test in either black/grey/white box manner.” is
a well suited definition for a HIL system proposed by [5].

The present study focuses on the HIL structure illustrated
in Figure 1.

The streaming chain consists of different processing nodes,
queues, and the connections between them. The PCs run Linux
with ROS or LV respectively.

The overall HIL system has hard real time requirements
for the timing precision of the outgoing packets. Through the
usage of a playback buffer, the processes that stream the data
to the buffer have only soft real time requirements.

Buffer overflows have already been a concern in previous
work. As described in [2], buffer underflows and overflows
are undesired behaviour. Therefore, a monitoring concept to
detect system performance is implemented on the HIL system.
This algorithm based on Network Calculus (NC) is described
in [3]. Data loss due to queue overflows is an undesired and
hard to analyse behaviour.

Derived from this problem, the following research questions
can be formulated:

• Which communication concepts can be used to eliminate
data loss in the ROS streaming chain?

• How does a data loss prevention concept influence the
system performance?

B. ROS

The Robot Operating System is a framework used to send
messages between processing nodes. The documentation can
be found in [6]. It is commonly used to program robots and
other computer systems. A project is structured in workspaces
and packages. There, different nodes or nodelets are imple-
mented. ROS nodes are the basic building blocks that can
communicate with other nodes and provide services.

A ROS node can be implemented in C++. A basic node
consists of a cpp file, which contains a main method. This
method initialises the node and performs the implemented
functionality. As different nodes run in different processes,
the nodes have separate memory spaces. This is a hurdle, as
data that is sent from one node to another needs to be copied.

Nodelets offer a solution to this issue. The key distinction
between nodes and nodelets is that multiple nodelets operate
within the same process, and therefore share the same memory

space. This can be used to share pointers to data instead of
copying the data.

To communicate, ROS provides two mechanisms. ROS
topics are a publish-subscribe based concept, where two First-
In-First-Out (FIFO) queues buffer the packets, but drop the
oldest message, once a queue overflow occurs. A ROS service
is a request-response style communication, where a client
sends a request to the server and waits for its response.

To send messages, the underlying TCPROS protocol is used.
It is based on the same error prevention mechanisms as TCP.

C. Concepts

This work aims to evaluate different concepts based on data
loss and performance metrics. The developed concepts are
based on different ideas.

1) Concept 1: Nodes with Topic: The first concept models
the current setup. This reference implementation consists of
two ROS nodes, one producer that creates messages and one
consumer that processes these messages. The producer sends
the packets to the consumer via a ROS topic.

This concept is used to estimate the changes introduced by
the other concepts to the HIL system.

2) Concept 2: Nodelets with Topic: Concept 2 introduces
the nodelet concept. As shared memory is required for concept
4, this concept is a modified version of concept 1, where the
producer and consumer are implemented as ROS nodelets.

3) Concept 3: Topic and Token: This concept adds a token
counter to concept 2. This counter is used to keep track of the
number of elements between the producer and consumer. The
producer decreases the counter for each sent message. If the
counter reaches zero, no new messages can be sent. Once a
message is received by the consumer, it replies with a token
message. When the producer receives the token message, the
counter is increased by one and a paused streaming can be
restarted. The starting number of the token counter must reflect
the minimum queue size in the section, to eliminate any data
loss. Both communication paths, the message sending and the
token responses, use separate ROS topics.

4) Concept 4: Service with 2 Queues: The last concept
utilises two local queues and the shared memory of nodelets.
This enables the producer and consumer to exchange pointers
through a ROS service. The producer fills its queue and the
consumer pops elements from the other queue. As soon as the
producer queue is full, the producer requests a queue pointer
exchange service from the consumer with the pointer to the
full queue. Once the consumer queue is empty, it replies with
the pointer to the emptied queue.

Through unrestricted access to the local queues, the nodelets
can avoid queue overflows and data loss.

D. Scenarios

To test the created concepts, different scenarios help to
identify differences.



Middle Layer

HW Layer

OS Layer
(LINUX RT)

Application Layer (LabVIEW)

HW Layer

OS Layer
(LINUX RT)

Application Layer (ROS/C++)

Replayer
Adapter
ROS to

TCP
Com_TCP

TROS1 TROS2 TROS3 TROS4

Data processing

ramdisk
(Rosbags)

TTCP_send

TCP/IP
Socket

TTCP_receive

Processing

TLV3

Timing
by
LV

Tsend_HW

TROS5

Queue

TLV1

Queue

TLV2

Queue

Localhost
via TCP

Queue

TROS0

Timing
by

Driver

DUT

Localhost
via TCP

Timing
by

FPGA

Tsend_kernel

CLOUD

Tsend_app

TCP/IP
Socket

Fig. 1. Detailed Conceptual Model and Software Instrumentation [4]

1) Data Types: The HIL system works with a lot of data
types that need to be replayed. This can include Controller
Area Network (CAN) messages, Radar packets and other
sensor streams. To test the concepts, representative CAN and
Radar data was used. Some describing KPIs of the input data
is listed in Table I.

TABLE I
KPIS OF CAN AND RADAR DATA

KPI CAN Radar
Message Size 32 B 1538 B
Min Cycle Time 2453 ns 2707 ns
Mean Cycle Time 2940961 ns 1703144 ns
Max Cycle Time 29295807 ns 163720481 ns
Min Processing Time 943 ns 1628 ns
Mean Processing Time 5416 ns 8136 ns
Max Processing Time 39170 ns 108098 ns

2) Multiple Streams: Another key ability of a HIL system
is the capability to stream multiple parallel streams. Therefore,
the scalability of the concepts is important. For testing this, the
concepts are tested with 1, 2, 4, 8 and 10 parallel streams of
CAN and Radar data. To achieve this, the created nodes and
nodelets are duplicated, and they only influence each other
through the shared resources.

E. KPIs

To evaluate the performance of an implementation, various
KPIs are needed. In this work, the following measurements
are used:

• Central Processing Unit (CPU) Utilisation
• Random Access Memory (RAM) Utilisation
• End-to-End Delay
• Jitter
• Data Loss

The CPU and RAM utilisation is measured during the test
run of a concept in a defined scenario. The CPU utilisation re-
flects a single core, running only the components under study.
The RAM utilisation is measured for the related processes. The
test runs are performed, and the measurements are logged on

a development system with the specifications listed in Table
II.

TABLE II
HARDWARE SPECIFICATION OF DEVELOPMENT SYSTEM

KPI Value
CPU Model Intel(R) Core(TM) i7-6820HQ
CPU Core(s) 4
Thread(s) per core 2
CPU max MHz 3600
RAM size in GB 16
RAM Type DDR4
RAM Speed in MT/s 2133

To calculate the following KPIs, three timestamps for each
packet are logged. The first timestamp is logged, when a
packet is sent by the producer. The other two timestamps
relate to the input and output time at the consumer. With these
timestamps, the end-to-end delay of a packet can be calculated.
It reflects the time, a packet needs from leaving the producer
until it was processed by the consumer.

The jitter describes the maximum deviation in both direc-
tions from the output of the consumer node to the input trace
provided in the scenario.

Having timestamp logs for each packet, enables us to
calculate the data loss, as we know how many messages were
processed at a logging point.

III. RESULTS AND DISCUSSION

We introduced the implemented concepts and different
scenarios in the previous section. Through a larger message
size and smaller message cycle times in the radar data, the
differences of the concepts are better emphasized in these re-
sults. The results of scenarios using CAN data are comparable.
Therefore, we limit the presentation of results to the scenarios
using radar data.

A. Results of Concept 2

The results of concept 2 are used as a baseline to compare
the different concepts, as concept 2 allows a well-founded
comparison to concept 1 regarding the differences between



nodes and nodelets and to concept 3 and 4 regarding the
additional service-blocking-queue mechanisms.

TABLE III
RESULTS OF CONCEPT 2 WITH RADAR DATA

Stream Count 1 2 4 8 10
mean CPU Util 7.6% 10.5% 16.4% 26.3% 29.9%
mean RAM Util 1.0% 1.2% 1.6% 2.4% 2.9%
mean Delay 0.3ms 0.5ms 0.8ms 2.0ms 3.1ms
mean Jitter 166ms 168ms 174ms 177ms 177ms
mean Data Loss 0.2% 0.2% 0.3% 4.0% 15.6%

Table III lists the absolute values for the relevant KPIs. The
CPU utilisation scales well with the number of streams and lies
in a moderate range. The RAM utilisation is low, even with
a small amount of available memory. The end-to-end delay
increases with the number of parallel streams, as the different
streams influence each other. The jitter of the message output
remains nearly constant throughout the scaling. The amount
of lost packets due to queue overflows increases significantly,
but because of small queue sizes, this behaviour is expected.

B. Results of Concept 1

To compare the concepts, the following tables list the
difference of the measured KPIs compared to the baseline of
concept 2. A positive value relates to an increased value and
a negative value to a reduction.

TABLE IV
DIFFERENCE OF CONCEPT 1 TO BASELINE WITH RADAR DATA

Stream Count 1 2 4 8 10
mean CPU Util -16% 39% 44% 43% 47%
mean RAM Util -40% -50% -62% -75% -79%
mean Delay 3126% 481% 393% 270% 245%
mean Jitter 26% 25% 16% 29% 31%
mean Data Loss 13566% 4262% 3529% 840% 225%

The results in table IV show some significant trends. The
CPU utilisation increases significantly, whereas the RAM
utilisation is reduced even more. This relates to the separation
of different ROS nodes in different processes. As nodelets
share the same process, less overhead is produced, resulting
in a reduced CPU utilisation but an increased RAM utilisation.
The increased overhead is also reflected in the mean end-to-
end delay. It is extremely high, and this results in an increased
jitter and data loss.

C. Results of Concept 3

This is the first concept that introduces a data loss preven-
tion mechanism. This results in an elimination of data loss, as
seen in Table V.

TABLE V
DIFFERENCE OF CONCEPT 3 TO BASELINE WITH RADAR DATA

Stream Count 1 2 4 8 10
mean CPU Util 22% 17% 7% 9% 24%
mean RAM Util 0% 0% 0% 0% 0%
mean Delay 33% 24% 22% 23% 9%
mean Jitter 3% 4% 3% 12% 12%
mean Data Loss -100% -100% -100% -100% -100%

As additional messages need to be sent, some overhead
is introduced. This increases the CPU utilisation slightly.
The delay and jitter increase, because new waiting times are
necessary to not lose any packets. This overhead is expected
and seems justified, as no packets are lost any more.

D. Results of Concept 4

To test different approaches, concept 4 uses local queues.
The queues are filled completely before they are forwarded
to the consumer node. This results in an increased end-to-end
delay for most packets, while the queue is filled.

TABLE VI
DIFFERENCE OF CONCEPT 4 TO BASELINE WITH RADAR DATA

Stream Count 1 2 4 8 10
mean CPU Util 62% 69% 94% 156% 188%
mean RAM Util 0% 0% 0% 0% -2%
mean Delay 2661% 1749% 1025% 559% 385%
mean Jitter 46% 44% 33% 19% 11%
mean Data Loss -100% -100% -100% -100% -100%

The consumer nodelet processes the full queues as fast
as possible, resulting in a bursty message output flow. This
increases the difference to the input flow and therefore the
jitter, as noted in Table VI. The memory usage is not influ-
enced, but the used ROS service does not scale well, resulting
in an unreasonable increase in CPU utilisation. Due to strict
blocking of individual threads when calling a service, the CPU
resource consumption is increased. A larger queue size can
reduce this issue. The nodelets in concept 3 do not block and
just idle when the service is blocked. Therefore, concept 4
is not as efficient and less suitable for the HIL use case as
concept 3.

IV. CONCLUSION

In this work, we developed and compared different concepts
for service blocking queues in ROS in the context of HIL
systems.

We introduced the required background information and ex-
plained the developed concepts. The concepts, which include a
reference implementation, a token bucket approach, and local
queues, were analysed in different scenarios. Additionally, the
scenarios are performed with a varying number of parallel
streams.

During development and testing of the created concept,
advantages and disadvantages were revealed. The reference
implementation with ROS nodes worked with only slight
differences to the nodelet approach.

The approach with tokens in concept 3 required the least
change to the existing structure of the streaming system, but
the handling of counters and messages requires caution during
implementation to avoid errors and hard to diagnose problems.
This concept would also allow the usage of ROS nodes.

Concept 4 utilises local queues and a blocking service call
to exchange queue pointers. Here, ROS nodelets are necessary.
This change in communication structure requires fundamental
changes, and the concepts do not scale as well as concept 3.



Therefore, concept 3 is the best-suited approach for this use
case.

As expected, all service-blocking-queue concepts introduce
an overhead, but the overall performance is acceptable, espe-
cially because data loss was eliminated in all scenarios.

Future work is to add this concept to the HIL system
streaming chain and to ensure the estimated performance is
achieved. Other concepts can be added to this framework,
based on the results and insights gained through concept 3
and 4.

REFERENCES

[1] Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293, August
2022.

[2] Christoph Funda. Arrival- and service-curve estimation methods from
measurements to analyze and design soft real-time streaming systems
with network calculus. 12 2022.

[3] Christoph Funda, Pablo Marin Garcia, Reinhard German, and Kai-Steffen
Hielscher. Online Algorithm for Arrival & Service Curve Estimation,
2023.

[4] Christoph Funda, Tobias Konheiser, Reinhard German, and Kai-Steffen
Hielscher. How to Model and Predict the Scalability of a Hardware-In-
The-Loop Test Bench for Data Re-Injection?, 2023.

[5] Christoph Funda, Tobias Konheiser, Thomas Herpel, Reinhard German,
and Kai-Steffen Hielscher. An industrial case study for performance
evaluation of hardware-in-the-loop simulators with a combination of
network calculus and discrete-event simulation. In 2022 International
Conference on Electrical, Computer, Communications and Mechatronics
Engineering (ICECCME), pages 1–7, 2022.

[6] Open Robotics. ROS Documentation. Available at https://wiki.ros.org/
Documentation.

ACKNOWLEDGMENT

This research was supported by ZF AG and ZF Mobility
Solutions GmbH (a company of ZF group).


