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Abstract—Integrated sensing and communication (ISAC) and
reconfigurable intelligent surfaces (RISs) are viewed as promising
technologies for the future 6G wireless networks. ISAC designs
assisted by RISs are particularly attractive for tracking and
localization problems in internet of everything (IoE) applications.
In particular, RISs can be deployed to realize a smart radio
environment (SRE) that tracks the user equipment (UE) in blind
spaces, i.e., where the direct line-of-sight (LoS) wireless link is
not available. This paper proposes a deep learning framework to
integrate RIS-assisted mobile UE localization and communication
in the 60 GHz band. The number of RIS and their electronic
steering angles are investigated to support both localization and
communication processes implemented on shared time resources.
The UE localization is obtained through DL algorithms based on
convolutional neural networks (CNN) and vision transformers
(ViT) structures. The proposed algorithms are trained using a
wide variety of physical parameters such as number of RIS
steering angles, RIS area size, and number of antenna at the
base station (BS). The system performance is measured in
terms of achieved positioning root mean squared error (RMSE),
algorithm complexity, and inference time. A Cramér-Rao bound
for estimating the localization error based on RISs deployment,
is also provided. Localization accuracy, frame efficiency and
throughput tradeoffs are explored for different IoT setups.

Index Terms—Integrated sensing and communication (ISAC),
Reconfigurable intelligent surface (RIS), sub-THz communica-
tion, localization, deep learning, transformers.

I. INTRODUCTION

HE emergence of integrated sensing and communications

(ISAC) as a cutting-edge technology is closely related
to recent advancements in wireless communication, to grow-
ing demands for enhanced sensing capabilities, and to the
need of real-time precise localization of the wireless network
nodes. ISAC has garnered significant research attention and
is recognized as a key technique for shaping the future of
mobile communications, particularly in the context of the sixth
generation (6G) of mobile communications [1]. A fundamen-
tal concept within ISAC involves leveraging communication
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signaling to infer user’s position [2]. Within this framework,
dynamically configured radio environments, also referred to
as SRE, along with reconfigurable intelligent surfaces (RIS),
hold considerable potential in enhancing both sensing and
communication functionalities.

RISs, are typically two-dimensional arrays of small, passive,
and reconfigurable elements [3] called meta atoms. These ar-
rays are engineered using advanced metamaterials that exhibit
unique properties, such as negative refractive index, which
enable fine-grained control over the direction and strength
of reflected waves. By phase-aligning the signals scattered
by the meta atoms, a RIS can macroscopically behave as a
steerable mirror that reflects the impinging signal towards a
desired direction [4]. By manipulating the propagation of elec-
tromagnetic waves, RISs can improve the spectral efficiency
of communication systems, extend the communication and
sensing coverage [5], and improve the estimation of the signal
direction of arrival (DOA), or the localization accuracy [6],
[7]. With a proper deployment and configuration of RISs,
connectivity between any two communicating devices can be
granted even in the absence of a direct LoS path among them.
It has been shown that RISs represent an efficient solution to
solve wireless channel impairments, mitigate interference and
realize energy-efficient beamforming [8].

RIS-assisted ISAC represents a new paradigm in 6G com-
munications that has not been fully investigated. To fill this
gap, in this work we explore the scenario depicted in Figure 1
where a base station (BS) communicates with a set of UEs
and is assisted by RISs for both data communication and UEs
localization.

A time-division allocation policy is proposed to integrate
real-time localization and communication. On the one hand
precise localization is crucial to enhance communication ef-
ficiency even though the localization process consumes time
resources, which detracts from those allocated for communica-
tion. On the other hand low-accuracy localization requires less
resources but also entails poor communication performance.

In this context, there is a trade-off with the aim of maximiz-
ing both the localization efficiency and the network through-
put. Specifically, there is a loss in data throughput due to
the necessity of transmitting pilot symbols dedicated to the
localization task. We observe that extending the localization
time results in a smaller localization error, leading to a higher
Signal-to-Noise Ratio (SNR) and overall network throughput.
However, a longer localization time decreases frame efficiency,
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Fig. 1. Scheme of a RIS-aided communication and localization system where
a BS exploits a set of RISs to interact with the UEs which are positioned in
the shaded area. The LoS path connecting the BS to the UEs is blocked
by an obstacle represented by the gree solid rectangle. Green and red solid
lines refer to the BS-RIS and RIS-UE LoS paths, respectively, whereas the
yellow lines represent the paths due to some reflecting objects. (a) RIS-assisted
communication (downlink): N RISs are deployed along a wall and reflect the
BS signal towards the UEs; the optimum electronic rotation angle applied by
RIS n is denoted by d,,, (b) RIS-based localization (uplink): the BS collects
the UE signal reflected by a set of dedicated RISs.

thereby reducing the network throughput. Therefore, it is
expected that there is an optimal combination of localiza-
tion error and frame efficiency that maximizes the network
throughput.

A. Related works

ISAC is an emerging technology that enables simultaneous
sensing of targets and communication with users [9]. ISAC
systems allow improving the efficiency of both sensing and
communication services by sharing limited resources, and is
expected to play a critical role in many future applications,
such as the internet of everything, and smart cities [10].

Localization in ISAC systems is performed taking into ac-
count for different channel characteristics, including the angle
of arrival, the time of arrival, the time difference of arrival, and
the received signal strength (RSS) [11]. The implementation
of ISAC systems faces several challenges. For example, when

operating in the millimeter-wave (mmWave) band, localization
signals suffer from high propagation attenuation and their
performance severely degrades especially when the line-of-
sight (LoS) between transmitting and receiving ends is ob-
structed [12]. Therefore, one of the main challenges is finding
an optimal allocation of the available network resources to
enhance the flexibility and capacity of ISAC systems [13].

The capability of RISs to provide virtual LoS links, modify
the propagation environment and improve the localization
accuracy is recently driving the development of RIS-aided
ISAC systems [14].

Authors in [14] proposed a superimposed symbol scheme
for double-RIS aided ISAC mmWave systems. Their aim was
to enable simultaneous communication and localization for
multiple UE. Their proposed approach involves estimating the
initial target direction, followed by an iterative refinement
through reduced-dimension matrix calculations. Simulation
results demonstrate that their scheme improves the throughput
and localization accuracy by 2 orders of magnitudes compared
with a scenario without RIS.

In [15] we proposed a jointly optimized RIS-aided envi-
ronment where the average network throughput is optimized
considering the UE positioning error. Extending the work in
[15], here we study the problem of integrating sensing and
communication tasks in a multi-user time-variant scenario
ensuring frame efficiency and network throughput.

In the following sections, we describe the main contribu-
tions of our paper regarding RIS-aided mobile UE localization
and communication within the 60 GHz frequency band.

B. Contributions

This paper extends our previous work [15] by adding the

following key novel contributions:

+ We propose a new solution for the localization of mobile
UEs, exploiting multiple RISs deployed in an indoor
environment. This solution makes use of deep learning
(DL) algorithms. In particular, convolutional neural net-
work (CNN) and vision transformer (ViT) are used for
UE trajectory estimation. We measure the localization
performance in terms of the achieved positioning root
mean square error (RMSE) and we show its dependence
on the system parameters.

o We derive an analytical expression for the Cramér-Rao
Lower Bound (CRLB) on the localization RMSE. This
bound is dependent on a) the number of RISs used for
localization, b) the number of RIS rotations, and ¢) SRE
geometry including the position of the BS and of the
RISs. It serves as a tool to aid in pre-deployment design
decisions.

¢ A time-division resource allocation strategy is proposed
for the integrated UE localization and communica-
tion process in order to optimize localization accuracy
and frame efficiency aiming to maximize the network
throughput. We observed that, by increasing the localiza-
tion accuracy, the network throughput is improved until
an optimal operating point is reached, beyond which a
further increase of the localization accuracy penalizes the
network throughput.



o A Tradeoff analysis is considered for different computa-
tional capabilities of the deployed devices, namely low-
power to high performance, and IoT relevant scenarios in
terms of inference time and computational complexity.

The rest of paper is structured as follows. In Section II

we address the details of the integrated RIS-aided localization
and communication, introducing and exploring the challenges
inherent in this context. Section III, delves into the channel
model and characterization of RIS. In Sect. IV the localization
process, the proposed DL algorithms and the localization sce-
nario are described. Finally, in Sect. V, we conduct a thorough
numerical analysis to assess the system’s performance, thereby
presenting conclusive insights into the effectiveness of the
proposed approach.

C. Mathematical notation

Throughout the paper we use the following mathematical
notation: boldface uppercase and lowercase letters denote
matrices and vectors, respectively. Iy is the k& x k identity
matrix and the conjugate transpose of matrix A is denoted
by AM. Moreover A" and ||A||r refer, respectively, to the
Moore-Penrose pseudo-inverse and the Frobenius norm of A.

II. INTEGRATED RIS-BASED SENSING AND
COMMUNICATION SYSTEM

In this section we describe our proposed integrated RIS-
aided localization and communication system, designed to
work in a time-variant indoor environment. First of all, we
describe the system setup, the main system parameters and the
resource allocation strategy. Finally, we discuss the system op-
timization, in terms of localization error and frame efficiency
to maximize the network throughput.

A. Localization and communication system

As depicted in Figure 1(a), we consider an indoor com-
munication and localization scenario where a BS serves as
access point (AP) and communicates with a set of UEs. The
BS transmits K data streams to as many mobile UEs that
are moving within the shaded area on trajectories unknown
to the BS. Differently from existing works on RIS-aided
localization [16], which consider the presence of the direct
LoS link between the BS and the UEs, we assume that
such link is obstructed due to the presence of an obstacle,
represented in the figure by the green solid rectangle. In our
scenario, connectivity is granted by leveraging a set of N RIS
deployed on the bottom wall.

In our analysis a 2D model of the environment is assumed,
where BS, UEs and RISs lie on the same plane. The design
parameter of the n-th RIS is simply its electronic steering
angle d,, (or electronic rotation) as shown in Figure 1(a). A RIS
electronically rotated by §,, behaves as an anomalous mirror
which appears to be rotated by an angle ¢,, with respect to
its mechanical orientation. Thus, at any time instant, the RIS-
aided SRE can be configured by properly selecting the vector
of the RIS rotation angles § = [d1,...,dy]" maximizing
some performance parameters, such as the overall network
throughput or the received signal strength.

When the UE position is exactly known, simple RIS-based
strategies can be put in place to optimize the SRE. For
instance, [4] proposes to electronically rotate RISs so that UEs
and RISs are associated through a bijective map, that is, each
RIS points towards a different UE receiver. On the other hand,
if UE are moving along unknown trajectories, it is necessary
to implement a UE localization strategy, sharing the available
resources between the localization and the communication
tasks. Localization must be periodically refreshed to update
RIS rotation values with a rate high enough to track UE
positional change. To manage the above dynamic scenario, we
propose the time division strategy described in Section II-B.

B. Frame structure and throughput optimization

A time division transmission scheme is assumed where each
time frame hosts both sensing and communication tasks in
separate slots. Figure 2 shows the structure of the frame, while
Table I lists, among others, the frame parameters. The frame
has duration T and it is composed of a preamble time Tp,
an actuation time 74 and a communication time 7, where:

o during the preamble the system estimates the positions of
the K users through uplink communication and the use
of Ny RIS dedicated to sensing;

« during the actuation time, the BS processes the estimated
UEs positions and rotates /N, RISs devoted to communi-
cation;

¢ during the communication time (downlink), the BS sends
K data streams to the UEs assisted by IV, RISs.

The frame efficiency, np, is defined here as the time fraction
dedicated to data communication, i.e.

_&_1_TP+TA
T TR Tr

During the communication time the spectral -efficiency
achieved by the k-th UE is

pr = log, (1+ SINRx (), )

nr (D

where the signal-to-interference plus noise ratio, SINRy, (13),
is a function of the frame efficiency 7, due to the interdepen-
dence between UE localization error, RISs configuration and
achieved SINR.

For example, given the frame duration T, if we increase
the communication time, 7, we reduce the overhead required
by UE position estimation, namely the preamble time T'p.
This leads to a reduced localization accuracy and, thus, to
suboptimal RIS configuration. If RISs are not correctly rotated
they do not efficiently convey the signal energy towards the
UEs, with detrimental effects on the SINRg. Conversely, by
increasing T» we improve the UE localization accuracy and
the achieved SINR but we also reduce the time dedicated to
communication.

For a signal with bandwidth B, the average throughput, T,
achieved by the k-th UE can be written as

Ty = nrpxB (3)
= nrBlog, (1+ SINRk(nr)) - 4
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Fig. 2. Structure of a localization and communication time frame. The
frame is constituted by a preamble time of duration Tp, devoted to the
estimation of the UEs’ positions, an actuation time of duration 74, during
which the estimated positions are elaborated by the BS and the RISs are
optimally rotated, and a communication time 7 during which the K users
simultaneously communicate in a spatially multiplexing mode. The parameters
are defined in Table L.

TABLE I
MAIN SYSTEM PARAMETERS AND CORRESPONDING VALUES USED IN THE
INTEGRATED LOCALIZATION AND COMMUNICATION TEST-BED

Symbol | Description Value
fo Carrier frequency 60 [GHz]
B Bandwidth 240 [MHz]
a Roll-off 0.25
Tsym Symbol Time 5.21 [ns]
K Number of users
N Number of RISs for sensing 3
N¢ Number of RISs for communication 2
Tr RIS rotation time 100 [us]
Tg Frame time 200 [ms]
Tp Preamble time Eqn. (5)
Ta Actuation time 1 [us]
Tc Communication Time To =T —Tp —Tx
R Number of RIS rotations 5to 120
Nsym Number of symbols per rotation 250
Tint Inference time Table V
Pr Transmit power 20 [dBm]
Sh Power spectral density of noise -174 [dBm/Hz]

The maximum throughput is achieved for a certain optimal
value of nr which trades-off communication performance and
localization accuracy.

C. Preamble and communication time slots

The preamble time T'p is divided into K uplink sensing
slots, one for each UE. During the k-th sensing slot, the BS
receives and processes the signal transmitted by the k-th UE
and reflected by the N, RISs dedicated to sensing. UE local-
ization is performed letting each of the above mentioned N
RISs assume, sequentially, R electronic rotation angles, i.e.,
each RIS is reconfigured R times during the k-th sensing slot.
Each RIS configuration requires a time T to be performed
and it is held until the k-th UE has transmitted Ny, Symbols
of duration Ty, each. Thus, a RIS rotation is performed every
TR + NgymTsym seconds.

Overall, the BS collects N;RNgy, samples of the signal
transmitted by the k-th UE and elaborates them by using DL
techniques, in order to infer the position of the k-th UE. The
inference time is denoted by Ti,s.

Therefore, the preamble time can be written as

TP == K[NSR(TR + TsymNsym) + T‘inf} . (5)

The communication time 7¢ is the frame portion devoted
to the communication between UEs and BS. The UEs com-
municate simultaneously to the BS in space division access.
T¢ is specified for downlink communication assuming Time
Duplex Mode access.

We assume the wireless channel is static during the frame
time. As T is the interval between two consecutive estimates
of the UE locations, it must be properly shaped according to
the velocity of the mobile UEs as well as to the beamwidth of
the radiation pattern generated by the RIS, which, in turn, is
a function of the RIS area A. Specifically, each RIS generates
a radiation pattern whose half power beamwidth (HPBW) is
approximately equal to \/v/A, hence, larger surfaces generate
narrower beams. We can determine the maximum interval
between consecutive estimates of UE position as the time
it takes to a UE to travel over an angular distance equal to
half of the HPBW. Assuming that the UE is moving with
velocity v over an azimuthal path at distance d from the RIS,
the maximum frame time is given by

dA

TF % \/Z’ (6)
where ) represents the signal wavelength. Considering the
trajectory and speed of the k-th UE, both localization and
communication tasks must occur within a precise time interval
before the k-th UE moves to its next location. For instance,
when the k-th UE has an average speed of v = 0.5 m/s, and
follows the specific trajectory, for a A = 5 mm, distance d = 4
m and a RIS area A = 100 cm? the localization process must be
implemented within a time interval of T = 200 ms allowing
the sensing and communication procedure to conclude before

the UE significantly changes its position.

III. RIS-BASED SENSING AND COMMUNICATION CHANNEL
MODEL

We now provide details on the wireless channel model we
use for communication and localization. Figure 1(a), depicts
the geometry of the downlink channel where the BS is
simultaneously transmitting to the K UEs. Instead, in Figure
1(b), we focus on localization, and consider the uplink scenario
where the UEs are transmitting and the BS is receiving. In both
cases, we assume that the UEs are not in LoS with the BS, but
the signal is reflected by a set of dedicated RIS, as depicted
in Figure 1.

A. RIS model

The RIS model adopted in this work is the one reported
in [17], and holds in the far-field regime. In such model, the
RISs have a square shape and are composed of square-shape



meta-atoms [18] with a side-length A wavelength, arranged in
a L x L grid of area

A=L2A%)\2 (7)

We assume that the signal power collected by a RIS is
proportional to A cos ¢!) for ¢() € [—n/2,7/2], and zero
otherwise, where ¢(!) is the angle of arrival (AoA) of the
signal impinging on the RIS. Similarly, we assume that the
RIS radiated power is proportional to |pris|?A cos ¢(?), for
#? € [-m/2,7/2] and zero otherwise, where #(?) is the
angle of departure (AoD) of the scattered field and prjgs is the
reflection efficiency of the RIS [4]. Both angles ¢(*) and ¢(?)
are measured with respect to the normal to its physical surface.
The above model holds in a 2D scenario where dependency
on the elevation angle can be neglected.

Every RIS can be configured by properly setting the phase-
shift that each meta-atom applies to the impinging signal. In
this work we employ the model in [4], [19], [20] where the
phase shift 8, ; , applied by the meta-atom at position ¢, ¢' in
RIS n, obeys to the linear equation

Hn,f,é’ = 27T€Agn + wn . (8)

for all ¢/ = 1...,L, where 1, and g, are parameters. The
phase-shift setting in (8) allows the n-th RIS to macroscopi-
cally act as an anomalous mirror able to steer a signal, arriving
from direction (;55}), to an arbitrary direction, ¢(2), that can be
decided by setting the parameter g,, according to [4]

g = sin(6(1)) — sin(6?). ©)

The RIS then appears as electronically rotated by angle ¢, =

(65 + ¢ /2.

B. Communication phase (downlink)

In the following, we assume the BS and the UE be equipped
with ULAs composed of MBS and MYE isotropic antennas,
respectively, spaced by A wavelengths. We also assume that
the UE ULAs can only perform analog beamforming, since
they are supposed to have limited hardware complexity.

The BS generates K streams of information symbols to be
transmitted to the K UEs, denoted by the random complex
vector sB5 = [sB5 ... sBS]T having zero-mean and covari-
ance E[sP5sP3H] = Iy Then, the signal transmitted by the
BS ULA can be described by the MBS x 1 vector

t=TsP5, (10)

where T is a precoding matrix of size MPS x K. The BS
transmit power cannot exceed E[||t||?] = PBS and the signal
received by the k-th UE can be described as

P =

(1)

where f}, is the beamforming vector of the k-th UE, fIk is the
MUE x MPBS channel matrix connecting the BS ULA to the
k-th UE ULA, t is given by (10), and nEE represents thermal
noise, modeled as a complex random variable with distribution
N (0, NyB) being Ny the thermal noise power spectral density
and B the signal bandwidth.

As will be detailed in Section III-D, the matrix fIk depends
on the system geometry, including the position of the BS
and of the RISs and, more importantly, the RIS setting and
the (unknown) UE position py € £, where L is the shaded
area depicted in Figure 1. In general we can explicit this
dependency by writing Hy = Hy(pg,d,v) where § =
[61,...,0xn]T is the vector of RIS rotation angles defined in
Section III-A and 1 = [¢y,...,9%x]" are the coefficients
appearing in (8). Note that  and 1) need to be properly chosen
so as to reflect the BS signal towards the UE. This, in turn,
requires a reliable estimation pj, of the true UE location py.

In a practical communication system the matrix Hj has
to be estimated and employed so as to compensate for the
channel effect. Estimates of the matrices Hy, £k = 1,..., K
are used at the BS as a component to build the precoding
matrix I'. Among many possible choices for I', we consider
the zero-forcing solution proposed in [4] given by

HT

=V PBS__ ,
[ H*||r

12)

that holds under the condition min(M BS'N) > K. The matrix
H has size K x M BS and its k-th row is an estimate of the
row vector f,':Hk appearing in (11), k = 1,..., K. Also, it
should be noted that H depends on the RIS setting & and )
which, in practice, need to be selected according to estimates
px of the UE locations.

Vzith perfect channel estimation (i.e., when the k-th row
of H equals f,':Hk) the precoder (12) nulls-out the multiuser
interference at the UEs and, in general, allows a simple
analytic representation of the SINR and of the achievable rate.
Instead, with unperfect channel estimation the precoder in (12)
leads to the achievable spectral efficiency in (2) where SINRy
is defined as

|wg x[?
0%+ Zj;ék |wr, ;]2

SINR;, = (13)

the vector wy, is given by wy = fHH,T and wy; is its j-th
component.

C. Localization phase (uplink)

In the localization phase the k-th UE, located at position py,
employs a single antenna and emits a sequence of zero-mean
random complex symbols, which are known at the receiver
and denoted by the random variables, sp’® whose power is
E[|sYE|?] = PUE. When the signal transmitted by the k-th
UE is reflected on a RIS dedicated to localization, say the n-
th, the signal received by the BS ULA is represented by the

vector

BS

215 = hy sy + 0k (14)

of size MBS, where Hk,n is the channel connecting the UE
antenna to the BS ULA through RIS n and 77];?,,8” is a complex
random vector representing thermal noise, with distribution
N(0,0%I/8s). Note that the vector hy, ,, depends on the n-th
RIS setting and on the k-th UE position, so that we can write

ZE,%L = ZII?EL(I)M 5na ¢n)



D. Wireless channel model

We now specify the structure of the matrices H,, in an
and of the vectors hy in (14), Kk = 1,..., K. In the scenario
depicted in Fig. 1 the LoS link between the BS and the UEs is
blocked by the presence of an obstacle and signal propagation
is granted by the presence of the RISs. Therefore, the wireless
channel connecting BS and the k-th UE, denoted by the matrix
H;, introduced in (11), is 2-hop and can be specified as

N
i, =Y H?e,Hl

n

15)

n=1

where:

o H%l) is the L2 x MBS channel matrix connecting the BS
to the n-th RIS;

e ©, is the diagonal matrix containing the phase shifts
elfn.e.e defined in (8);

. H;f; is the MUP x L? channel matrix connecting the
n-th RIS to the k-th UE.

The matrices HS) and H,(le are described by the superposi-

tion of a line-of-sight (LOSB path and S non-LoS paths, each

of them resulting from the reflection or scattering of the signal

on an obstacle. We refer to [4, Section II.C] for details.
Similarly, in the localization phase (Sect. III-C) the channel

vector hy introduced in (14) can be written as

)T®nh(2)

hy, = H{ ko (16)

-
where hgzl is the first row of the matrix H,(le Note that in
both (15) and (16) the dependency on d,, and 1, is hidden in
the matrix ® whose elements are given by (8) and (9).

IV. LOCALIZATION SYSTEM

In this section, we describe the algorithms and models
used for UE localization. The proposed localization algorithms
process the samples, ZEEL, of the signals transmitted by the
UEs, reflected by the RISs and received at BS, as specified
in Section III-C, and obtain the estimated k-th UE position,
Pk, by classification. We discuss two DL models, namely
convolutional neural network (CNN) and Vision Transformers
(ViT) as well as training and validation processes. Transformer
encoders have been viewed as viable alternatives to classi-
cal convolutional filtering in visual or image-based recogni-
tion/classification tasks [21]. CNN and ViT algorithms tailored
for localization are trained off-line using labeled received
signal at landmarks positions samples obtained from varying
RISs, rotations and symbols.

The proposed algorithms have been applied to our scenario
by conducting localization tests with different UE trajectories
and indoor mobility patterns. The k-th user is assumed to move
from a predefined position py and follows a trajectory [ (see
Figure 4) with speed defined as u = [v, w] including linear
and angular velocity.
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Fig. 3. Localization algorithms and input data structure; (a) CNN structure
including input data structure, convolutional layers and output for the local-
ization problem, (b) ViT structure replacing the convolutional layers with TF
for the localization problem.

A. Convolutional Neural Networks and Vision Transformers
A deep neural network (DNN) composed of @) layers maps
the signals transmitted by the k-th UE and observed at the BS
into the estimated position
Pr = H(W; Zy),

where W = W(Q) encapsulates the parameters of the DNN
model, for all the @ layers, and Zj

a7

Zr = [2350011), -, 21 (61,R), - -

oz, (On.)s - zen, (On,R)], (18)

is the matrix containing the signal samples, i.e. the input data
to the DL models and algorithms.

The sequence of R rotations of n-th RIS,
[0n1, s Onpy ey On.g] is uniformly distributed between
two limiting angles depending on the system geometry.

Figure 3 reports the DNN structures chosen to support the
classification of UE position in the monitored area. Figure
3(a) depicts the CNN structure where the input signal samples
are rearranged in a 3D matrix. The figure also shows the
convolutional layers, pooling, and output fully connected lay-
ers. Figure 3(b) presents the ViT structure. Here transformers
encoders, tailored for 3D input data [22], are employed instead
of CNN layers. As shown in the figures convolutional layers
and transformers encoders have different input data structures
due to their different design principles. In particular, CNN
operates on feature maps of the input data while ViT operates
on a flattened sequence of the data patches. The parameters



TABLE I

CONVOLUTIONAL NEURAL NETWORK SETTING

Input size MBS x R x Ny 8 x {50, 70,100,120} x 3
First layer convolution+Relu+pooling 8 filters with size (3 X 3)
Second layer | convolution+Relu+pooling 16 filters with size (3 X 3)
Third layer convolution+Relu+pooling | 64 filters with size (3 X 3)
Output layer dropout+fully connected Pk

TABLE III
SOME PARAMETERS OF VIT
Input size MBS x R x Ny

learning rate 0.001
Heads 2
Transformer layers 3

Patch size 6 X6
Embedded dimension 64

of the considered models 7(-) in (17), including the layers
and the adopted optimizer, are detailed in Tables II and III for
CNN and for ViT, respectively.

The DNN models are trained to classify P UE marked
positions (landmarks) to uniformly cover the monitored area.
Landmarks are distributed on a 2D regular grid. DNN model
learning is implemented via supervised methods. The local-
ization accuracy is evaluated by assuming the UE moving on
a random trajectory /. In order to evaluate the UE estimation
performance, we replace the () layers in CNN with transform-
ers (TF). For example the input data Zj, for the ViT algorithm
is split into Py = %js patches. The sequence of linear
embeddings (tokens) of the 2D patches (X, € RPNXNsP 2)
is fed into repeated standard TF layers to model the global
relations for classification (localization) [21].

B. Online UE trajectory estimation

Figure 4, shows an example of a trajectory performed by a
UE while moving inside the monitoring area. The trajectory
parameters are shown in Table IV-B. The UE travels from the
predefined position py to a specific destination by following
a trajectory with linear/angular velocity defined by u = [v, w]
in each T.

We consider the k-th UE following a trajectory p(t) =
[k () yi(t) 0k (t)]T represented as a sequence of p positions
visited by the UE as travelling towards its destination. The
set of positions that the UE assumes during its trajectory is
computed iteratively as:

2p(t) = zp(t—Ts) — %sin@k—k %sin(&k + wTy),
ye(t) = yp(t —Ts)+ % cos Oy — % cos(Oy + wTy)
Op(t) = Op(t—Ts) + wTs.

We consider the following constraints for the UE’s trajec-
tory {pr(t)}, also summarized in Table IV. First, the UE
initial position is fixed to pg = (—1.2,4,—7/5). Second,
the maximum distance that the UE can travel in each time
interval is | pr(t + 1) — pr(t) |< vTs, where v represents
the linear velocity of the UE. Finally, the BS should complete

8 T T .
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Fig. 4. RIS-aided UE localization scenario. Ns=3 RISs are exploited for
the localization located at positions (-1 1), (0, 1), (1,1), and BS located at
position (-4, 4), red circles shows the UE trajectory and yellow stars presents
the training landmarks for the UE trajectory estimation.

TABLE IV
TRAJECTORY PARAMETERS

Initial position po = (—1.2,4,—7/5)
T (time interval in seconds) 0.3
v (linear velocity (m/s)) 0.5
w (angular velocity ) 7/10
p (no. of visited positions) 35
0 (direction of UE on motion) [—m, 7]

both localization and communication processes within the time
frame/slot T, < T'p.

V. RESULTS

In this section we present the results obtained by simulating
the RIS-aided ISAC scenario in Figure 1. We deployed a total
of N = 5 RISs within the designated area. Among these, Ns=3
RISs are used for the localization task, while the remaining
two serve for communication. In our simulation setup the
UEs are equipped with a single antenna (MY® = 1) and are
distributed within the shaded area £ of Figure 1. The BS—
RIS and RIS-UE links are assumed to be in LoS while no
direct link between the BS and the UE is available. The RIS—
UE propagation channel follows the model in (15). Moreover,
S = 3 isotropic scatterers [23] are randomly positioned in L.
They are characterized by a reflection coefficient whose square
magnitude is -20 dB. All the links also experience shadowing
effects that we assume to be log-normally distributed with
variance oy, = 2dB. Finally, the signal carrier frequency is
set to fo = 60GHz (i.e. A = 5mm).

As for the UE localization, we consider the indoor test
environment depicted in Figure 4, which represents a room of
size 8 mx8m with a BS located at coordinates (—4,4). The
room is also equipped with N =3 RISs with area A=100cm?,
equally spaced along a wall coinciding with the x axis. First,
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Fig. 5. CRLB for the scenario depicted in Figure 4, plotted versus the number
of RIS rotations, as the number of RIS, Ng, varies.

we conducted a pre-deployment analysis based on the Cramer-
Rao Lower Bound (CRLB) to verify the proper deployment
of the RIS in the monitoring area, and to ensure a certain
level of accuracy. Subsequently, we evaluated the localization
performance in terms of RMSE, considering both RIS deploy-
ment and parameter settings such as electronic rotations of
RIS, BS antenna numbers, and hyper-parameters used by CNN
and ViT localization algorithms. The performance of CNN
and ViT is analyzed in terms of positioning error, inference
time and exchange parameters in training to identify the
best performance based on available resource for sensing and
communication in specific applications. Finally, we present
the integrated localization and communication results in terms
of network throughput and discuss the trade-off between
localization accuracy and frame efficiency to maximize the
throughput.

A. RIS deployment and CRLB analysis

Figure 5 shows the CRLB bound to the localization accuracy
plotted versus the number of RIS electronic rotations, R, as
the number of RISs dedicated to localization, IN,, varies for
PUE =20dBm, Ngym = 250 samples per RIS rotation, and
MBS = 8 antennas at the BS. The signal bandwidth is set to
B =1GHz and the thermal noise power is 02 = —84 dBm.

The CRLB is computed as described in Appendix VI, and
refer to the scenario depicted in Figure 4.

As expected, when NN, increases the RMSE decreases since
a larger number of signal samples are available. In particular,
the RMSE decreases by about one order of magnitude when 2
RISs are employed instead of one. However, by adding another
RIS to the system (IN; = 3) the RMSE does not significantly
improve. We also observe that the RMSE significantly im-
proves as the number of RIS rotations, R, increases. However
for R > 60 it shows a floor. We therefore conclude that
Ng; = 3 RIS and R = 60 rotations are sufficent for providing
excellent localization performance in the considered scenario.
It’s noteworthy that there exists a notable disparity between
the RMSE obtained from the CRLB and that derived from
our proposed algorithms for UE localization. This disparity
arises from several factors. Firstly, the parameter setup for DL
algorithms, such as number of convolutional layers, and filter

number and size in CNN, or TF layers, and patch size in ViT,
significantly impacts the accuracy of localization. Secondly,
there is a discretization error floor since we treated the
localization problem as a classification task and implemented
the model training on a discrete grid. Therefore the achieved
RMSE is strongly affected by the grid size. Lastly, the effects
of multipath and shadowing are not accounted for in the CRLB
calculation, leading to further errors in UE location estimation.

B. Localization results

Figure 4 highlights the scenario considered for the localiza-
tion process. LoS path is blocked by an obstacle (green), and
the BS receives the signal transmitted by the UE and reflected
from Ny = 3 RISs located at coordinates (-1 1), (0, 1), (1,1).
The BS is equipped with a uniform linear array of MBS =8
antennas while the RISs can implement up to R electronic
rotations between two consecutive localization updates. The
UE moves on a trajectory which is generated as described in
the Sect. IV-B: a trajectory example is also highlighted by
red markers in the Figure 4 and the main parameters used to
setup the UE movements inside the monitored area are defined
in the Table IV. The training is done on a 2D regular grid
comprising P = 50 landmarks, each spaced 30 cm apart from
its consecutive counterpart.

The CNN and ViT algorithms main configuration param-
eters are defined in Table II and Table III, respectively. In
what follows, the localization performance is verified for
different numbers of RISs and their corresponding electronic
rotations, namely R = [5, 20, 40, 60, 80, 100, 120]. To assess
the UE positioning accuracy and communication performance,
the CNN and ViT algorithms are also trained with various
parameter sets, including samples Ny, and variable rotations
R as above. Note that the number of electronic rotations R
required to get an accurate scan of the UE region depends on
the beamwidth of the RIS, which, in turn, is a function of its
area A in (7), here set to A = 100cm? [15]. However, since
the surface area A is inversely proportional to the HPBW of
the RIS radiation pattern, an increase of A requires a larger
number of rotation angles R to cover the monitored area and,
hence, a higher computational effort for processing the input
of the DL algorithms.

In Figure 6, the Root Mean Square Error (RMSE) (m) re-
sults using CNN and ViT algorithms are presented for various
numbers of R. The localization error decreases with increasing
values of R when using CNN, reaching an RMSE value of
approximately 0.65 m with R = 120 and Ny, = 250. The
ViT algorithm outperforms CNN in almost all the explored
cases in exchange for larger computational cost, as clarified in
the following. The ViT model is particularly well performing
as the observed RMSE reduces to 0.4 m.

Table V compares the inference time and the model size
(model footprint), in terms of number of trainable parameters,
using CNN and ViT algorithms and different numbers of R. In
particular, the inference time measurements presented in Table
V are obtained using both CNN and ViT models deployed
on two devices with different computational capabilities and
modelling low-power to high performance BS servers. We
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Fig. 6. Root Mean Square Error (RMSE) result of UE localization Using
CNN and vision transformers (ViT) for the same scenario presented in figure
4. The RMSE result for Nsym=250 (i.e., sample) and number of electronic
rotations R.

considered a typical industrial IoT device (IoT) equipped
with a dedicated low-power Tensor Processing Unit (TPU)
and a higher performance computing system (HPC). The
IoT device operates on 12-core ARM CPU and is equipped
with a low-power NVIDIA Maxwell GPU (Jetson Nano IoT
device model). The HPC utilizes a high performance 24 core
processor (AMD Ryzen TR 3960X).

As presented in the result, ViT algorithm is more compu-
tational demanding in terms of inference time with respect to
CNN using both IoT and HPC devices. Regarding the specific
HPC hardware, the inference time decreases by approximately
80% for CNN and 30% for ViT, respectively.

Hence, there exists a trade-off among selecting the DL
algorithms, their corresponding performance in terms of local-
ization accuracy, and the computational capacity of available
resources. In what follows, we discuss the impact of the
proposed localization system on communication, throughput
and frame efficiency performance. We also provide some
general guidelines for efficient ISAC operations.

C. Integrated localization and communication results

A RIS-aided communication network was simulated as-
suming K = 2 users served by as many RIS and the
frame structure described in Sec. II-B. During the preamble
time (7},), the UEs’ locations were estimated by either CNN
or ViT algorithm. Moreover, to quantify the impact of the
localization inference time on frame efficiency, we analyzed
the results obtained with IoT and HPC hardware (HW) setups,
as described in Sec. IV, which model different BS designs. The
SRE and frame parameter values used in the simulation are
listed in Table I. The frame time value equal to 200 ms has
been calculated from (6) assuming d = 4 m, v = 0.5 m/s and
RIS area A = 100 cm?, corresponding to a HPBW of about
0.05 rad. The resulting preamble time and its components,
i.e. the required time for sensing the channel (red) and the
inference time (green) are shown in Fig. 8 as a function of

———BS-RIS
= Obstacle
® UE (true)
@® UE (est)
Scatterer (S)
—RIS-UE
RIS-S-UE

Fig. 7. Smart radio environment simulator example for communication
performance assessment: 2 UEs are moving randomly in the monitored area
and communicating with the BS.

TABLE V
COMPARISONS WITH CLASSIC CNN-BASED MODELS AND
TRANSFORMER-BASED MODELS.

A: Inference time (ms), Nsym=250

R 5 20 40 80 100 120
CNN 5/5 13/6 20/7 37/10 48/11 60/12
(IoT/HPC)

ViT 23/20 66/20 72/49 144/51 161/135  205/145
(IoT/HPC)

B: Parameters millions (M), Nsynm=250

R 5 20 40 80 100 120
CNN 0.02 0.03 0.1 0.2 0.28 0.34
ViT 2 2.8 2.8 5.6 15 15.8

the number of rotations (R) for the four tested combinations
of DL algorithms (CNN, ViT) and HW setups (IoT, HPC).
The values of the inference time have been taken from Table
V. The sensing time is proportional to R, as shown in (5)
and it includes the RIS rotation time 7z and the time to
transmit Ny, symbols from each UE to the BS through the
RIS. With the chosen values of Tz (100 us), Ngym (250) and
Tsym (5.21 ns), the Tk is dominant over Ty, Nsym. Hence,
in principle, Ty Ngym could be increased, without affecting
the preamble time.

The localization inference time increases with R following
a rate dependent on the DL algorithm and on the HW setup
employed. If ViT is used, the inference time dominates the
preamble time 7p. Moreover, ViT can be operated only with
a relatively small number of RIS rotations, especially when
deployed on a IoT device with limited computing capabilities.

The performance of the communication system was as-
sessed by generating J = 1000 snapshots featuring K = 2
single antenna (MY® = 1) UEs randomly deployed within
the shaded area of Fig. 7, which illustrates an example
snapshot. The RIS-UEs channel is also characterized by S = 3
scatterers, randomly deployed in the same area, which produce
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Fig. 8. Preamble time and its components as a function of the number of rotations when either CNN (left) or ViT (right) are implemented on two different

types of HW to localize UEs.

interference signals received by the UEs. The above 1000
snapshots were generated for different values of the UE
localization error sampled from the curves in Fig. 6 with R
ranging from 5 to 120 in steps of 10.

Fig. 9(a) shows the frame efficiency np defined in (1)
against the localization RMSE obtained by ViT and CNN
algorithms under the two different HW setups. As expected
from the previous analysis, high frame efficiencies > 0.75
can be obtained in exchange for increased localization errors
(> 0.6 m), which, in turn, might deteriorate the system
throughput.

The corresponding average system throughput defined in (4)
is reported in Fig. 9(b). For K UEs and J simulation runs, the
average throughput is defined as:

T=B7]F

L.\>—~

J K
ZZ1og2 [1+SINRx(j)]  (19)
j=1k=1

where SINR () defined in (13) for UE & and snapshot j. The
remaining quantities are defined in Table 1.

The average throughput is shown in Fig. 9(b) as a function
of the frame efficiency in (1) for the four combinations
of DL algorithms and HW setups. ViT and CNN sample
different intervals of the frame efficiency. For example, the
CNN algorithm deployed on an IoT setup obtains an efficiency
which ranges from 0.05 to 0.85 and throughput from 0.02

Gbps up to 0.6 Gbps. The same CNN model now deployed on
HPC hardware provides a higher frame efficiency, between 0.5
to 0.9, and throughput from 0.4 Gbps to 0.6 Gbps. Considering
both CNN and ViT algorithms, the throughput increases with
the frame efficiency up to a maximum point above which
the observed localization errors produce a degradation of
the communication performance. The optimal operating point
depends on the localization algorithm chosen and the com-
putational capabilities of the device (IoT/HPC), which affect
the inference time. For the considered scenario, the optimal
point is observed at frame efficiencies of 0.75 — 0.87 for ViT
and 0.95 — 0.98 for CNN. Using HPC HW does not turn into
a significant gain on system throughput. In addition, the less
resource demanding CNN-based localization algorithm awards
very similar throughput performance as ViT, since it requires
lower inference time for each localization update.

VI. CONCLUSIONS

The paper proposed a novel approach for tackling the dual
problem of UE localization and communication in a RIS-
aided smart radio environment. The solution operates at 60
GHz frequency band while we considered a typical scenario
where the Line-of-Sight (LoS) link between the UE and the
multiple-antenna BS is blocked by obstacles. Multiple RISs
are deployed to establish virtual links and support both local-
ization and communication services. In the proposed indoor
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efficiency for the four tested combinations of DL algorithm and HW type.

setup, each RIS has an area size of A = 100cm?, the UEs
have single antenna while the BS is equipped with a small
array of MBS = 8 antennas.

The UEs are localized by exploiting: (i) an optimized set
of RIS which act as electronically steerable reflectors and
configured by a set of rotation angles and (ii) 2 different
algorithms based on Convolutional Neural Network (CNN)
and Vision Transformer (ViT) deep learning models. We
evaluate the performance of both algorithms in terms of RMSE
for varying RIS parameters, inference time and complexity,
considering also different computational capabilities of the
deployed BS and devices, namely low-power (IoT) to high
performance (HPC). Finally, the Cramer-Rao lower bound to
positioning accuracy is evaluated and verified as a tool for
pre-deployment assessment.

Targeting integrated localization and communication ser-
vices as envisioned in Internet of Everything paradigms, we
propose a time resource allocation strategy aiming to achieve
the best compromise between UE positioning accuracy and
spectral efficiency. While a longer localization time ensures
a smaller positioning error, there is no apparent benefit in
reducing such error below 0.5 m as this subtracts resources
useful for communication, decreasing the frame efficiency and
the network throughput. An optimal tradeoff can be identified
as a function of the RIS configuration, the computational
capability of devices, the localization algorithm as well as
the UE mobility pattern. Trading localization accuracy with
frame efficiency is generally more beneficial for ViT-based
localization algorithm rather than CNN.

Exploring the application of the proposed solution in real-
world scenarios, such as smart cities or industrial IoT, would
provide valuable insights into its practical feasibility and
effectiveness. Lastly, delving deeper into the optimization of
RIS deployment strategies, considering factors like RIS size,
could contribute to the development of more practical and
scalable implementations.

APPENDIX: DERIVATION OF THE CRLB

In this section, we derive the Cramer-Rao Lower Bound
(CRLB) on the estimate of the UE position, given the BS

observations of the UE signals during the localization phase.
The CRLB is employed in Sect.V for pre-deployment RIS per-
formance assessment. Consider a set of R,, setting (i.e. values
for the pair d,,1,) for RIS n, and denote by d,, ,, 1, the
r-th setting, 7 = 1, ..., R. Then the observations zﬁi(én, V)
given by (14) obtained during the r-th setting can be denoted
by z],i%’r. For notation simplicity let us drop the superscript
(BS) and the subscripts k,n,r (they will be resumed later)
and let us focus on a generic transmitting UE, reflecting RIS
and RIS setting. The signal vector received at the BS can thus
be rewritten as

z=q+n, (20)

where q £ hy, (6.0, Un.r)zUE. Note that q depends also on
the user position, whose coordinates (x,y) are the unknown
parameters we would like to estimate. By recalling that the
noise vector i) has distribution N'(0, 0?1 ss), the density of
z given the user position is given by

g - b (z=az-q
faluy(2) = (70277 p( 3 )(21)

The 2 x 2 Fisher information matrix (FIM) is defined as F =
Egjzy[ccT] where

|

is the gradient of the log density, with respect to the user
coordinates. We first observe that

o)
% log fz|x,y(z) :| (22)

oy IOg fz|ac,y (Z)

1
108 fofsy(2,0,y) = C = (2= (z—a), (23

where C' is a constant. After some algebra the FIM can be
rewritten as

2 [ ot ot

_ = r Ox x Oy
T (24)

oy Oz oy Oy

Assume that for each reflecting RIS 7 and for each rotation
r the BS observes S independe,nt signal samples. Then, overall
the BS collects a set of S Zivzl R,, independent observations
of the UE signal, where N’ is the number of RIS used in



the localization phase. Hence, by resuming the subscripts, the
FIM for UE k takes the form

N' R,

Fp,=9 Z ZFk,n,m

n=1r=1

(25)

where Fy, ,, . is the FIM computed using a single sample
obtained through rotation 7 of RIS n,

H
0y n v Ok n v

H
9 9ay, 4 v Ok n,r

F = Oxy Oz Oz oYk 26
ke, o2 aqﬁ,n,r 9k n,r aqz,n,r 9k n,r (26)
Oyk Oy, Yk Yk

The elements on the diagonal of F;l are the (per coordinate)
CRLB on the variance of the estimation error achieved by any
unbiased estimator. Therefore the CRLB on the variance of the
position error is given by

CRB = Tr{F; '} (27)

The analytic expression of the partial derivatives in F, ,, ,. is
quite cumbersome, although easy to obtain. Indeed, according
to (16) the vector qi_,,, can be written as

qQk,n,r = i\:lk:,n,'r‘s}.ng = Hgll)Tgn}rh](f,stgEa (28)

where the dependence on the UE k coordinates (xy,yx) is in
hl(ny Hence

(2) (2)

aqk n,r ahk: n 8qk n,r hk: n
LT D 1 o s , AL LA M nr ’ 29
ox ko, Oz, dy ko, OYg (29)

@’ UE : :
and My, , = Hy’ O, s If the link connecting UE £
with RIS n has only the LoS path, the vector h,(le is given by
(see [4] for details) hgzl — VAncosdin

Vardy
uy, is the spatial signature of RIS n as observed by UE £,

whose m-th element is proportional to e27mA/ASn S gy
is the distance between UE k and RIS n, and ¢y, is the
angle of UE £k as observed from RIS n. The dependence on
the UE position (2, yx) is hidden in dj, and in the angle
P.n- Specifically dy., = V(@B —2;)2 + (yR5 —y;)2 and

27
e I X dknuy ,, where

bk,n = arctan % where (218 yRIS) g the position of
the n-th RIS.
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