loading page

Experimental pairwise entanglement estimation for an N-qubit system
  • +1
  • Elizabeth Behrman ,
  • Nathan Thompson ,
  • Nam Nguyen ,
  • James Steck
Elizabeth Behrman
Wichita State University

Corresponding Author:[email protected]

Author Profile
Nathan Thompson
Author Profile
Nam Nguyen
Author Profile
James Steck
Author Profile

Abstract

Designing and implementing algorithms for medium and large scale quantum computers is not easy. In previous work we have suggested, and developed, the idea of using machine learning techniques to train a quantum system such that the desired process is “learned,” thus obviating the algorithm design difficulty. This works quite well for small systems. But the goal is macroscopic physical computation. Here, we implement our learned pairwise entanglement witness on Microsoft’s Q\#, one of the commercially available gate model quantum computer simulators; we perform statistical analysis to determine reliability and reproducibility; and we show that after training the system in stages for an incrementing number of qubits (2, 3, 4, \ldots) we can infer the pattern for mesoscopic $N$ from simulation results for three-, four-, five-, six-, and seven-qubit systems. Our results suggest a fruitful pathway for general quantum computer algorithm design and for practical computation on noisy intermediate scale quantum devices.