Fast Power Density Assessment of 5G Mobile Handset Using Equivalent Currents Method

As the fifth-generation (5G) mobile communication
is utilizing millimeter-wave (mmWave) frequency bands, electromagnetic field (EMF) exposure emitted from a 5G mmWave mobile handset should be evaluated and compliant with the relevant EMF exposure limits in terms of peak spatial-average incident power density. In this work, a fast power density (PD) assessment method for a 5G mmWave mobile handset using the equivalent currents (EQC) method is proposed. The EQC method utilizes the intermediate-field (IF) data collected by a spherical measurement system to reconstruct the EQCs over a reconstruction surface, and then computes the PD in
close proximity of the mobile handset with acceptable accuracy. The performance of the proposed method is evaluated using a mmWave mobile handset mock-up equipped with four quasi-Yagi antennas. The assessed PD results are compared with those computed using full-wave simulations and also those measured with a planar near-field (NF) scanning system. In addition, three influencing factors related to the accuracy of the EQC method, namely, the angular resolution, the phase error, and the handset
position in the IF measurements, are also analyzed. The proposed method is a good candidate for fast PD assessment of EMF exposure compliance testing in the mmWave frequency range.