loading page

2-output Spin Wave Programmable Logic Gate
  • +3
  • Abdulqader Mahmoud ,
  • Frederic Vanderveken ,
  • Christoph Adelmann ,
  • Florin Ciubotaru ,
  • Sorin Cotofana ,
  • Said Hamdioui
Abdulqader Mahmoud
Delft University of technology

Corresponding Author:[email protected]

Author Profile
Frederic Vanderveken
Author Profile
Christoph Adelmann
Author Profile
Florin Ciubotaru
Author Profile
Sorin Cotofana
Author Profile
Said Hamdioui
Author Profile

Abstract

This paper presents a 2-output Spin-Wave Programmable Logic Gate structure able to simultaneously evaluate any pair of AND, NAND, OR, NOR, XOR, and XNOR Boolean functions. Our proposal provides the means for fanout achievement within the Spin Wave computation domain and energy and area savings as two different functions can be simultaneously evaluated on the same input data. We validate our proposal by means of Object Oriented Micromagnetic Framework (OOMMF) simulations and demonstrate that by phase and magnetization threshold output sensing \{AND, OR, NAND, NOR\} and \{XOR and XNOR\} functionalities can be achieved, respectively. To get inside into the potential practical implications of our approach we use the proposed gate to implement a 3-input Majority gate, which we evaluate and compare with state of the art equivalent implementations in terms of area, delay, and energy consumptions. Our estimations indicate that the proposed gate provides 33% and 16% energy and area reduction, respectively, when compared with spin-wave counterpart and 42% energy reduction while consuming 12x less area when compared to a 15 nm CMOS implementation.