A Tactile Sensing Concept for 3D Displacement and 3D Force Measurement using Light Angle and Intensity Sensing
This paper proposes an optical-based tactile sensor design concept, which uses a light angle and intensity sensor to infer force and displacement from deformations of a silicone pillar. The proposed design uses a simple, low?cost fabrication method with an overall small-scale form factor. The sensor can measure 3D displacement, 3D force, and vibration. The overall displacement estimation error (mean ± SD) in the X, Y, and Z axes was 40.2 µm ± 34.8 µm, 4.0 µm ± 55.3 µm and 13.3 µm ± 11.8 µm, respectively, over a full-scale lateral displacement of 1 mm radius in X and Y and 2.2 mm compression in Z. The overall force estimation error (mean ± SD) was 38.3 ± 29.6 mN, 40.1 ± 29.4 mN and 0.074 ±61.9 mN for a full-scale force of approximately 2 N in X or Y, and 6 N in Z. Sensitivity to vibrations in the range of 10-950 Hz was also evaluated showing good sensitivity over this entire range. This new sensing approach could be of benefit in robotic manipulation applications, as it could be easily arrayed and/or integrated into the fingers of a robotic gripper to sense slip events and measure load and grip forces and torques.
Funding
Design of tactile sensors for robotic and prosthetic grippers inspired by human touch
Science Foundation Ireland
Find out more...History
Email Address of Submitting Author
olivia.leslie@ucdconnect.ieORCID of Submitting Author
0000-0001-6930-166XSubmitting Author's Institution
Univerisity College DublinSubmitting Author's Country
- Ireland