TechRxiv
A high resolution capacitive MEMS force sensor with novel bionic swallow comb arrays for multiphysics measurement_8.5pages.pdf (2.38 MB)
Download file

A high resolution capacitive MEMS force sensor with novel bionic swallow comb arrays for multiphysics measurement

Download (2.38 MB)
preprint
posted on 24.05.2022, 21:16 authored by Wendi GaoWendi Gao
Precise force sensing is essential for the mechanical characterization and robotic micromanipulation of biological
targets. In this work, a high-resolution MEMS capacitive force sensor was proposed for measuring ultralow multiphysics. A bionic swallow structure that contained multiple feathered comb arrays was designed for reducing chip dimension and eliminating undesirable mechanical cross-coupling effect. The comb structure was optimized for maximum sensitivity, linearity, and compact chip size. Utilizing a novel interconnection configuration, interferences derived from parasitic capacitance and electrostatic forces exerted negligible effects on the sensor output. The proposed bionic force sensor was fabricated following a simple three-mask process and integrated with ASIC readouts. Its measuring sensitivity was 7.151 fF/nm, 0.529 aF/nN, and 4.247 pF/g for displacement, force, and inclination measurements, respectively. The proposed sensor had a large measurement range of 1000.00 nm and 13.83 µN with a high linearity of 0.9998. The 1-σ resolution was 0.0328 nm and 0.4436 nN, and the noise floor resolution was 0.0044 nm √? and 0.0597 nN/ √? for
displacement and force measurements, respectively. The bias stability of Allan deviance was 0.0050 nm and 0.0678 nN at an integration time of 0.65 s. The proposed bionic swallow sensor exhibited considerable improvement over existing capacitive sensors and feasibility for ultralow multiphysics measurement in biomedical applications.

History

Email Address of Submitting Author

wendi_gao@xjtu.edu.cn

ORCID of Submitting Author

0000-0001-5243-6007

Submitting Author's Institution

Xi'an Jiaotong University

Submitting Author's Country

China