TechRxiv
A_Non_Convex_Optimization.pdf (707.51 kB)

A Non-Convex Optimization Framework for Large-Scale Low-rank Matrix Factorization

Download (707.51 kB)
preprint
posted on 20.07.2021, 19:59 by Sajad Fathi Hafshejani, Saeed Vahidian, Zahra Moaberfard, Bill Lin
Low-rank matrix factorization problems such as non negative matrix factorization (NMF) can be categorized as a clustering or dimension reduction technique. The latter denotes techniques designed to find representations of some high dimensional dataset in a lower dimensional manifold without a significant loss of information. If such a representation exists, the features ought to contain the most relevant features of the dataset. Many linear dimensionality reduction techniques can be formulated as a matrix factorization. In this paper, we combine the conjugate gradient (CG) method with the Barzilai and Borwein (BB) gradient method, and propose a BB scaling CG method for NMF problems. The new method does not require to compute and store matrices associated with Hessian of the objective functions. Moreover, adopting a suitable BB step size along with a proper nonmonotone strategy which comes by the size convex parameter $\eta_k$, results in a new algorithm that can significantly improve the CPU time, efficiency, the number of function evaluation. Convergence result is established and numerical comparisons of methods on both synthetic and real-world datasets show that the proposed method is efficient in comparison with existing methods and demonstrate the superiority of our algorithms.

History

Email Address of Submitting Author

saeed.vahidian1@gmail.com

Submitting Author's Institution

UC San Diego

Submitting Author's Country

United States of America

Usage metrics

Licence

Exports