Zhang-Cyber.pdf (1.01 MB)
Download fileA varying-gain ZNN model with fixed-time convergence and noise-tolerant performance for time-varying linear equation and inequality systems
In this paper, a varying-gain zeroing (or Zhang) neural network (VG-ZNN) is proposed to obtain the online solution of the time-varying linear equation and inequality system. Distinguished from the fixed-value design parameter in
the original zeroing (or Zhang) neural network (ZNN) models, the design parameter of the VG-ZNN model is a nonlinear function that changes with time. The VG-ZNN model composed of the new time-varying design parameter we proposed can achieve fixed-time convergence and tolerate time-varying bounded noise and time-varying derivable noise. The theoretical detailed analysis of the convergence and robustness of the VG-ZNN model are given.