TechRxiv
2021_ACC_Mobile_Sensing__Submitted__Archived_.pdf (493.11 kB)

An Efficient Adaptive Sampling Approach for Mobile Robotic Sensor Networks using Proximal ADMM

Download (493.11 kB)
preprint
posted on 07.04.2021, 20:45 by Viet-Anh Le, Linh Nguyen, Truong X. Nghiem
Adaptive sampling in a resource-constrained mobile robotic sensor network for monitoring a spatial phenomenon is a fundamental but challenging problem. In applications where a Gaussian Process is employed to model a spatial field and then to predict the field at unobserved locations, the adaptive sampling problem can be formulated as minimizing the negative log determinant of a predicted covariance matrix, which is a non-convex and highly complex function. Consequently, this optimization problem is typically addressed in a grid-based discrete domain, although it is combinatorial NP-hard and only a near-optimal solution can be obtained. To overcome this challenge, we propose using a proximal alternating direction method of multipliers (Px-ADMM) technique to solve the adaptive sampling optimization problem in a continuous domain. Numerical simulations using a real-world dataset demonstrate that the proposed PxADMM- based method outperforms a commonly used grid-based greedy method in the final model accuracy.

History

Email Address of Submitting Author

vl385@nau.edu

ORCID of Submitting Author

0000-0002-9829-7150

Submitting Author's Institution

Northern Arizona University

Submitting Author's Country

United States of America

Licence

Exports

Licence

Exports