TechRxiv
2021_DNSoverHTTP_Detection_to submit-2.pdf (2.77 MB)
Download file

An Explainable AI-based Intrusion Detection System for DNS over HTTPS (DoH) Attacks

Download (2.77 MB)
preprint
posted on 2022-01-05, 19:17 authored by Tahmina ZebinTahmina Zebin, Shahadate Rezvy,, Yuan Luo
Over the past few years, Domain Name Service (DNS) remained a prime target for hackers as it enables them to gain first entry into networks and gain access to data for exfiltration. Although the DNS over HTTPS (DoH) protocol has desirable properties for internet users such as privacy and security, it also causes a problem in that network administrators are prevented from detecting suspicious network traffic generated by malware and malicious tools. To support their efforts in maintaining a secure network, in this paper, we have implemented an explainable AI solution using a novel machine learning framework. We have used the publicly available CIRA-CIC-DoHBrw-2020 dataset for developing an accurate solution to detect and classify the DNS over HTTPS attacks. Our proposed balanced and stacked Random Forest achieved very high precision (99.91\%), recall (99.92\%) and F1 score (99.91\%) for the classification task at hand. Using explainable AI methods, we have additionally highlighted the underlying feature contributions in an attempt to provide transparent and explainable results from the model.

Funding

not applicable

History

Email Address of Submitting Author

t.zebin@uea.ac.uk

ORCID of Submitting Author

0000-0003-0437-0570

Submitting Author's Institution

University of East Anglia

Submitting Author's Country

United Kingdom