Fulltext to TechRxiv 2020-12-25.pdf (561.91 kB)
Download fileAn Optimization Method Combining RSSI and PDR Data to Estimate Distance Between Smart Devices
preprint
posted on 2020-12-31, 07:51 authored by Bo ZhaoBo Zhao, Chao Zheng, Xinxin Ren, Jianrong DaiDistance
estimation methods arise in many applications, such as indoor positioning and Covid-19 contact tracing. The
received signal strength indicator (RSSI) is favored in distance estimation.
However, the accuracy is not satisfactory due to the signal fluctuation. Besides,
the RSSI-only method has a large ranging error because it uses fixed parameters
of the path loss model. Here, we propose an optimization method combining RSSI
and pedestrian dead reckoning (PDR) data to estimate the distance between smart
devices. The PDR may provide the high accuracy of walking distance and
direction, which is used to compensate for the effects of interference on the
RSSI. Moreover, the parameters of the path loss model are optimized to
dynamically fit to the complex electromagnetic environment. The proposed method
is evaluated in outdoor and indoor environments and
is also compared with the RSSI-only method. The results show that the mean
absolute error is reduced up to 0.51 m and 1.02 m, with the improvement of
10.60% and 64.55% for outdoor and indoor environments, respectively, in
comparison with the RSSI-only method. Consequently, the proposed optimization
method has better accuracy of distance estimation than the RSSI-only method,
and its feasibility is demonstrated through real-world evaluations.
History
Email Address of Submitting Author
paulzhao@mail.tsinghua.edu.cnORCID of Submitting Author
0000-0002-5733-4445Submitting Author's Institution
Department of Engineering Physics, Tsinghua University, Beijing 100084, China; and the Key Laboratory of Particle & Radiation Imaging, Ministry of Education (Tsinghua University), Beijing 100084, ChinaSubmitting Author's Country
- China