TechRxiv
Download file
Download file
1/1
2 files

An electrical impedance tomography based two-electrode frequency-scan gesture recognition system

preprint
posted on 2021-09-30, 00:10 authored by Gang Ma, Haofeng Chen, peng wang, Xiaojie WangXiaojie Wang

A novel two-electrode, frequency-scan electrical impedance tomography (EIT) system for gesture recognition not only reduces the measurement complexity and the number of electrodes, but also achieves a high accuracy in recognizing common gestures and pinch gestures. A bespoke circuit with two medical electrodes was developed to collect data from the back of the hand and presented a frequency-scan method to increase the diversity of impedance data. The data were processed using data cleaning and feature extraction methods. The processed data were then sent to machine learning classification models for training and realizing accurate gesture recognition. To verify the effectiveness of this system, we designed two groups of nine gestures in a hand-gesture recognition experiment. The results showed that the system can achieve a recognition accuracy of 98.3% with a group of four common gestures and an accuracy of 97.4% with a group of five pinch gestures. Additionally, two proof-of-concept interactive scenarios were implemented to demonstrate the general purpose of this system.

History

Email Address of Submitting Author

xjwang@iamt.ac.cn

ORCID of Submitting Author

0000-0002-4740-7882

Submitting Author's Institution

Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou, 213164, China

Submitting Author's Country

  • China