TechRxiv
JP_final_techxriv.pdf (1.36 MB)

Application of Input Shaping Method to Vibrations Damping in a Type-IV Wind Turbine Interfaced with a Grid-Forming Converter

Download (1.36 MB)
preprint
posted on 2021-06-29, 04:37 authored by Artur AVAZOVArtur AVAZOV
Type-IV wind turbines can experience torsional vibrations in the drivetrain structure. This can lead to additional stress on turbine components and a quality reduction of the power delivered to the grid. The vibrations are mostly induced by fast variations of the electromagnetic torque, which depends on the control of a back-to-back converter. A number of studies have already presented methods to mitigate the drivetrain vibrations. However, the research was dedicated to cases when the converter, interfacing a wind turbine to the grid, operates based on a grid-following control. A wind turbine can be also interfaced to a grid-forming converter. In this case, a back-to-back converter control creates a strong link between the electromagnetic torque and grid dynamics, so the abovementioned problem remains relevant. Therefore, this paper presents a solution to damp torsional vibrations in the direct drive of a Type-IV wind turbine, interfaced to the electrical power grid with a voltage source converter based on a grid-forming control. The damping of the drivetrain vibrations relies on the input shaping method implemented using a zero-vibration filter. Simulation results prove the effectiveness of the method to damp drivetrain vibrations during grid frequency variations. In addition to that, damping impact on system behavior with respect to other parameters is analyzed and its mitigation is discussed.

Funding

Foundation I-SITE Université Lille Nord – Europe

History

Email Address of Submitting Author

artur.avazov@centralelille.fr

ORCID of Submitting Author

0000-0002-3839-0302

Submitting Author's Institution

Centrale Lille, L2EP, KU Leuven

Submitting Author's Country

  • France