TechRxiv
arXiv Specific Emitter Identification Kleder.pdf (909.54 kB)
Download file

Arbitrarily Accurate Classification Applied to Specific Emitter Identification

Download (909.54 kB)
preprint
posted on 2023-02-04, 02:09 authored by Michael KlederMichael Kleder

This article introduces a method of evaluating subsamples until any prescribed level of classification accuracy is attained, thus obtaining arbitrary accuracy. A logarithmic reduction in error rate is obtained with a linear increase in sample count. The technique is applied to specific emitter identification on a published dataset of physically recorded over-the-air signals from 16 ostensibly identical high-performance radios. The technique uses a multi-channel deep learning convolutional neural network acting on the bispectra of I/Q signal subsamples each consisting of 56 parts per million (ppm) of the original signal duration. High levels of accuracy are obtained with minimal computation time: in this application, each addition of eight samples decreases error by one order of magnitude.

Funding

Not Applicable

History

Email Address of Submitting Author

mkleder@gmail.com

ORCID of Submitting Author

0000-0001-8345-4099

Submitting Author's Institution

Virginia Polytechnic Institute and State University

Submitting Author's Country

  • United States of America