TechRxiv
Automated Control of Transactive HVACs in Energy Distribution Systems.pdf (1.89 MB)
0/0

Automated Control of Transactive HVACs in Energy Distribution Systems

Download (1.89 MB)
preprint
posted on 13.08.2020 by Boming Liu, Akcakaya Murat, Tom McDermott
Heating, Ventilation, and Air Conditioning (HVAC) systems contribute significantly to a building’s energy consumption.
In the recent years, there is an increased interest in developing transactive approaches which could enable automated and flexible scheduling of HVAC systems based on the customer demand and the electricity prices decided by the suppliers. Flexible and automated scheduling of the HVAC systems make it a prime source for participation in residential demand response or transactive energy systems. Therefore, it is of significant interest to identify an optimal strategy to control the HVAC systems. In this paper, reducing the energy cost while keeping the comfort level acceptable to the users, we argue that such a control strategy should consider both the energy cost and user c omfort simultaneously. Accordingly, we develop the control
strategy through the solution of an optimization problem that balances between the energy cost and consumer’s dissatisfaction. This optimization enables us to solve a decision-making problem through first price prediction and then choosing HVAC temperature settings throughout the day based on the predicted price, history of the price and HVAC settings, and outside temperature. More specifically, we formulate the control design as a Markov decision process (MDP) using deep neural networks and use Deep Deterministic Policy Gradients (DDPG)-based deep reinforcement learning algorithm to find the optimal control
strategy for HVAC systems that balances between electricity cost and user comfort.

Funding

DE-AC05-76RL01830

History

Email Address of Submitting Author

bol22@pitt.edu

Submitting Author's Institution

University of Pittsburgh

Submitting Author's Country

United States of America

Exports

Exports