ZFAMC_MIMO.pdf (1.66 MB)

Automatic Modulation Classification for MIMO Systems via Deep Learning and Zero-Forcing Equalization

Download (1.66 MB)
posted on 19.01.2020 by Guan Gui, Yu Wang, Yue Yin, Juan Wang, Jinlong Sun, Hikmet Sari, Jie Gui, Fumiyuki Adachi, Haris Gacanin
Automatic modulation classification (AMC) is one of the most critical technologies for non-cooperative communication systems. Recently, deep learning (DL) based AMC (DL-AMC) methods have attracted significant attention due to their preferable performance. However, the study of most of DL-AMC methods are concentrated in the single-input and single-output (SISO) systems, while there are only a few works on DL-based AMC methods in multiple-input and multiple-output (MIMO) systems. Therefore, we propose in this work a convolutional neural network (CNN) based zero-forcing (ZF) equalization AMC (CNN/ZF-AMC) method for MIMO systems. Simulation results demonstrate that the CNN/ZF-AMC method achieves better performance than the artificial neural network (ANN) with high order cumulants (HOC)-based AMC method under the condition of the perfect channel state information (CSI). Moreover, we also explore the impact of the imperfect CSI on the performance of the CNN/ZF-AMC method. Simulation results demonstrated that the classification performance is not only influenced by the imperfect CSI, but also associated with the number of the transmit and receive antennas.


Email Address of Submitting Author

Submitting Author's Institution

Nanjing University of Posts and Telecommunications

Submitting Author's Country