TSP__Part_I__Covariance_Recovery_for_One_Bit_Sampled__Data_With_Time_Varying_Sampling__Thresholds_one_column.pdf (1.07 MB)
Download fileCovariance Recovery for One-Bit Sampled Data With Time-Varying Sampling Thresholds— Part I: Stationary Signals
preprint
posted on 2022-03-03, 06:33 authored by Arian EamazArian Eamaz, Farhang Yeganegi, Mojtaba SoltanalianMojtaba SoltanalianOne-bit quantization, which relies on comparing the signals of interest with given threshold levels, has
attracted considerable attention in signal processing for communications and sensing. A useful tool for
covariance recovery in such settings is the arcsine law, that estimates the normalized covariance matrix
of zero-mean stationary input signals. This relation, however, only considers a zero sampling threshold,
which can cause a remarkable information loss. In this paper, the idea of the arcsine law is extended to the
case where one-bit analog-to-digital converters (ADCs) apply time-varying thresholds. Specifically, three
distinct approaches are proposed, investigated, and compared, to recover the autocorrelation sequence
of the stationary signals of interest. Additionally, we will study a modification of the Bussgang law, a
famous relation facilitating the recovery of the cross-correlation between the one-bit sampled data and
the zero-mean stationary input signal. Similar to the case of the arcsine law, the Bussgang law only
considers a zero sampling threshold. This relation is also extended to accommodate the more general
case of time-varying thresholds for the stationary input signals.
Funding
CCF-1704401
ECCS-1809225
History
Email Address of Submitting Author
aemaz2@uic.eduSubmitting Author's Institution
University of Illinois ChicagoSubmitting Author's Country
- United States of America