main.pdf (3.43 MB)

DLTD: Dynamic linear threshold model with decay for influence spread

Download (3.43 MB)
posted on 2023-05-11, 20:44 authored by Xunlian WuXunlian Wu, Peng Gang Sun

Influence propagates more widely over social networks, and strongly affects people’s thoughts, opinions, even behaviors in human livings. Influence spread is a more complicated problem that makes the modeling of this process even more challenging. The linear threshold (LT) model provides a simple way to describe the problem. However, this model neglects the decay of individuals’ influence as time lapses. This paper develops a dynamic linear threshold model with decay (DLTD) in which influence decays based on three strategies: (1) random decay, (2) linear decay, and (3) nonlinear decay. The results on real-world datasets show that compared with the LT model, the DLTD tends to be more accurate especially the decay with a linear function, and more concentrated to converge to the ground-truth as the size of seed set increases. We also observe that our model is more stable to the networks’ structures. Furthermore, an interesting fifinding indicates that the balance between community structures’ internal links and external links is more effective for influence spread.


Email Address of Submitting Author

ORCID of Submitting Author


Submitting Author's Institution

Xidian University

Submitting Author's Country

  • China