TechRxiv
Trans_Paper_single_column.pdf (903.23 kB)
Download file

Deep-Learning-Based Non-Coherent DPSK Multiple-Symbol Differential Detection in Single-User Massive MIMO Systems

Download (903.23 kB)
preprint
posted on 2021-07-14, 03:27 authored by Omnia MahmoudOmnia Mahmoud, Ahmed El-Mahdy, Robert F. H. Fischer
In this work, non-coherent massive MIMO differential phase-shift keying modulation (DPSK) detection is considered to get rid of the complexity of channel estimation. However, most of the well-performing DPSK detection techniques require high computational complexity at the receiver. The use of deep-learning is proposed for detecting the transmitted DPSK symbols over a single-user massive MIMO system. We provide a multiple-symbol differential detection implementation using deep-learning. Two deep-learning-based multiple-symbol differential detection receiver designs are proposed and compared with differential detection (DD), decision-feedback differential detection (DFDD), and multiple-symbol differential detection (MSDD) for the same system parameters. Where multiple-symbol differential sphere detection (MSDSD) is used to implement MSDD. The results show that the proposed deep-learning-based classification neural networks outperform decision-feedback differential detection and achieve an optimal performance compared to conventional multiple-symbol differential detection implemented by multiple-symbol differential sphere detection.

History

Email Address of Submitting Author

omnia.abdel-hamid@guc.edu.eg

Submitting Author's Institution

Information Engineering and Technology, The German University in Cair

Submitting Author's Country

  • Egypt