TechRxiv
DeepPulse__A_Multi_branch_Deep_Neural_Network_for_Heart_Rate_Estimations_from_Wrist_worn_Single_wavelength_Photoplethysmography__IEEE_EMBC22_ (1).pdf (378.77 kB)
Download file

DeepPulse: An Uncertainty-aware Deep Neural Network for Heart Rate Estimations from Wrist-worn Photoplethysmography

Download (378.77 kB)
preprint
posted on 2022-03-28, 04:35 authored by Daniel RayDaniel Ray, Tim Collins, Prasad Ponnapalli
Wearable Photoplethysmography (PPG) has gained prominence as a low cost, unobtrusive and continuous method for physiological monitoring. The quality of the collected PPG signals is affected by several sources of interference, predominantly due to physical motion. Many methods for estimating heart rate (HR) from PPG signals have been proposed with Deep Neural Networks (DNNs) gaining popularity in recent years. However, the 'black-box' and complex nature of DNNs has caused a lack of trust in the predicted values. This paper contributes DeepPulse, an uncertainty-aware DNN method for estimating HR from PPG and accelerometer signals, with aims of increasing the reliability, usability and interpretability of the predicted HR values. To the best of the authors' knowledge no PPG HR estimation method has considered aleatoric and epistemic uncertainty metrics. The results show DeepPulse is the most accurate method for DNNs with less than 1 million network parameters. Finally, recommendations are given to reduce epistemic uncertainty, validate uncertainty estimates, improve the accuracy of DeepPulse as well as reduce the model size for resource-constrained edge devices.

History

Email Address of Submitting Author

18053479@stu.mmu.ac.uk

ORCID of Submitting Author

0000-0003-4829-7635

Submitting Author's Institution

Manchester Metropolitan University

Submitting Author's Country

  • United Kingdom