TechRxiv
DeepVir.pdf (385.38 kB)

DeepVir - Graphical Deep Matrix Factorization for In Silico Antiviral Repositioning: Application to COVID-19

Download (385.38 kB)
preprint
posted on 23.09.2020, 14:11 by Angshul Majumdar, Aanchal Mongia, Emilie Chouzenoux, Stuti Jain
This work formulates antiviral repositioning as a matrix completion problem where the antiviral drugs are along the rows and the viruses along the columns. The input matrix is partially filled, with ones in positions where the antiviral has been known to be effective against a virus. The curated metadata for antivirals (chemical structure and pathways) and viruses (genomic structure and symptoms) is encoded into our matrix completion framework as graph Laplacian regularization. We then frame the resulting multiple graph regularized matrix completion problem as deep matrix factorization. This is solved by using a novel optimization method called HyPALM (Hybrid Proximal Alternating Linearized Minimization). Results on our curated RNA drug virus association (DVA) dataset shows that the proposed approach excels over state-of-the-art graph regularized matrix completion techniques. When applied to in silico prediction of antivirals for COVID-19, our approach returns antivirals that are either used for treating patients or are under for trials for the same.

History

Email Address of Submitting Author

angshul@iiitd.ac.in

Submitting Author's Institution

Indraprastha Institute of Information Technology

Submitting Author's Country

India

Licence

Exports

Licence

Exports