TechRxiv
Denoising with Singular Value Decomposition for Phase Identification in Power Distribution Systems-compressed.pdf (1.82 MB)

Denoising with Singular Value Decomposition for Phase Identification in Power Distribution Systems

Download (1.82 MB)
preprint
posted on 10.08.2021, 03:20 by Nicholas ZaragozaNicholas Zaragoza, Vittal Rao
Phase identification is the problem of determining what phase(s) that a load is connected to in a power distribution system. However, real-world sensor measurements used for phase identification have some level of noise that can hamper the ability to identify phase connections using data-driven methods. Knowing the phase connections is important to keep the distribution system balanced so that parts of the system are not overloaded, which can lead to inefficient operations, accelerated component degradation, and system destruction at worst. We use Singular Value Decomposition (SVD) with the optimal Singular Value Hard Threshold (SVHT) as part of a feature engineering pipeline to denoise data matrices of voltage magnitude measurements. This approach reduces Frobenius error and increases the average phase identification accuracy over a year of time series data. K- medoids clustering is used on the denoised voltage magnitude measurements to perform phase identification.

History

Email Address of Submitting Author

msk-5s@protonmail.ch

ORCID of Submitting Author

0000-0003-0893-0387

Submitting Author's Institution

Texas Tech University

Submitting Author's Country

United States of America