TBME3140258.pdf (14.06 MB)
Download fileDetection of Freezing of Gait using Convolutional Neural Networks and Data from Lower Limb Motion Sensors
preprint
posted on 2022-12-15, 04:15 authored by Bohan ShiBohan Shi, Arthur Tay, W.L. Au, Dawn M.L. Tan, Nicole S.Y. Chia, Shih-Cheng YenFreezing of Gait is the most disabling gait disturbance in Parkinson’s disease. For the past decade, there has been a growing interest in applying machine learning and deep learning models to wearable sensor data to detect Freezing of Gait episodes. In our study, we recruited sixty-seven Parkinson’s disease patients who have been suffering from Freezing of Gait, and conducted two clinical assessments while the patients wore two wireless Inertial Measurement Units on their ankles. We converted the recorded time-series sensor data into continuous wavelet transform scalograms and trained a Convolutional Neural Network to detect the freezing episodes. The proposed model achieved a generalisation accuracy of 89.2% and a geometric mean of 88.8%.
History
Email Address of Submitting Author
bohan.shi@u.nus.eduORCID of Submitting Author
0000-0003-0338-724XSubmitting Author's Institution
National University of SingaporeSubmitting Author's Country
- Singapore