loading page

Digital Immunity Module: Preventing Unwanted Encryption using Source Coding
  • +4
  • Arash Mahboubi ,
  • Keyvan Ansari ,
  • Seyit Camtepe ,
  • Jarek Duda ,
  • Paweł Morawiecki ,
  • Marcin Pawłowski ,
  • Josef Pieprzyk
Arash Mahboubi
Charles Sturt Univeristy

Corresponding Author:[email protected]

Author Profile
Keyvan Ansari
Author Profile
Seyit Camtepe
Author Profile
Jarek Duda
Author Profile
Paweł Morawiecki
Author Profile
Marcin Pawłowski
Author Profile
Josef Pieprzyk
Author Profile

Abstract

Unwanted data encryption, such as ransomware attacks, continues to be a significant cybersecurity threat. Ransomware is a preferred weapon of cybercriminals who target small to large organizations’ computer systems and data centres. It is malicious software that infects a victim’s computer system and encrypts all its valuable data files. The victim needs to pay a ransom, often in cryptocurrency, in return for a decryption key. Many solutions use methods, including the inspection of file signatures, runtime process behaviors, API calls, and network traffic, to detect ransomware code. However, unwanted data encryption is still a top threat. This paper presents the first immunity solution, called the digital immunity module (DIM). DIM focuses on protecting valuable business-related data files from unwanted encryption rather than detecting malicious codes or processes. We show that methods such as file entropy and fuzzy hashing can be effectively used to sense unwanted encryption on a protected file, triggering our novel source coding method to paralyze the malicious manipulation of data such as ransomware encryption. Specifically, maliciously encrypted data blocks consume exponentially larger space and longer writing time on the DIM-protected file system. As a result, DIM creates enough time for system/human intervention and forensics analysis. Unlike the existing solutions, DIM protects the data regardless of ransomware families and variants. Additionally, DIM can defend against simultaneously active multiple ransomware, including the most recent hard to detect and stop fileless ones. We tested our solution on 39 ransomware families, including the most recent ransomware attacks. DIM successfully defended our sample file dataset (1335 pdf, jpg, and tiff files) against those ransomware attacks with zero file loss.