TechRxiv
manuscript.pdf (729.39 kB)
0/0

ELNIDS: Ensemble Learning based Network Intrusion Detection System for RPL based Internet of Things

Download (729.39 kB)
preprint
posted on 01.01.2020 by Abhishek Verma, Virender Ranga
Internet of Things is realized by a large number of heterogeneous smart devices which sense, collect and share data with each other over the internet in order to control the physical world. Due to open nature, global connectivity and resource constrained nature of smart devices and wireless networks the Internet of Things is susceptible to various routing attacks. In this paper, we purpose an architecture of Ensemble Learning based Network Intrusion Detection System named ELNIDS for detecting routing attacks against IPv6 Routing Protocol for Low-Power and Lossy Networks. We implement four different ensemble based machine learning classifiers including Boosted Trees, Bagged Trees, Subspace Discriminant and RUSBoosted Trees. To evaluate proposed intrusion detection model we have used RPL-NIDDS17 dataset which contains packet traces of Sinkhole, Blackhole, Sybil, Clone ID, Selective Forwarding, Hello Flooding and Local Repair attacks. Simulation results show the effectiveness of the proposed architecture. We observe that ensemble of Boosted Trees achieve the highest Accuracy of 94.5% while Subspace Discriminant method achieves the lowest Accuracy of 77.8% among classifier validation methods. Similarly, an ensemble of RUSBoosted Trees achieves the highest Area under ROC value of 0.98 while lowest Area under ROC value of 0.87 is achieved by an ensemble of Subspace Discriminant among all classifier validation methods. All the implemented classifiers show acceptable performance results.

History

Email Address of Submitting Author

abhiverma866@gmail.com

ORCID of Submitting Author

0000-0001-6687-4809

Submitting Author's Institution

National Institute of Technology Kurukshetra

Submitting Author's Country

India

Licence

Exports