DOCUMENT
ARCHIVE
1/1
Elastic Shape Analysis of Brain Structures for Predictive Modeling of PTSD
preprint
posted on 2021-09-24, 13:59 authored by Yuexuan WuYuexuan Wu, Suprateek Kundu, Jennifer S. Stevens, Negar Fani, Anuj SrivastavaPredictive modeling involving brain morphological features and other covariates is of paramount interest in such heterogeneous mental disorders as PTSD. We
propose a comprehensive shape analysis framework representing brain substructures, such as the hippocampus,
amygdala, and putamen, as parameterized surfaces and
quantifying their shape differences using an elastic shape
metric. Under this metric, we compute shape summaries
(mean, covariance, PCA) of subcortical data and represent individual shapes by their principal scores under a shape PCA basis. These representations are rich enough to allow visualizations of full 3D structures and help understand localized changes. Subsequently, we use these PCs, the auxiliary exposure variables, and their interactions for regression modeling and prediction. We apply our method
to data from the Grady Trauma Project (GTP), where the
goal is to predict clinical measures of PTSD. The framework seamlessly integrates accurate morphological features and
other clinical covariates to yield superior predictive performance when modeling PTSD outcomes. This approach
reveals considerably greater predictive power under the
elastic shape analysis than the current approaches and
helps identify local deformations in brain shapes associated with PTSD severity.
Funding
R01 MH120299
DMS 1953087
History
Email Address of Submitting Author
yw17g@my.fsu.eduORCID of Submitting Author
0000-0002-1857-5254Submitting Author's Institution
Florida State UniversitySubmitting Author's Country
- United States of America