revised 2-column 2023-05-04.pdf (1.19 MB)
Download file

Electron tunneling in ferritin and associated biosystems

Download (1.19 MB)
posted on 2023-05-11, 20:30 authored by Ismael Diez PerezIsmael Diez Perez, Sierin Lim, Christian Nijhuis, Olivier Pluchery, Christopher RourkChristopher Rourk

Ferritin is a 12 nanometer (nm) diameter iron storage protein complex that is found in most plants and animals. A substantial body of evidence has established that electrons can tunnel through and between ferritin protein nanoparticles and that it exhibits Coulomb blockade behavior, similar to quantum dots and nanoparticles. This evidence can be used to understand the behavior of these particles for use in nanoelectronic devices, for biomedical applications and for investigation of quantum biological phenomena. Ferritin also has magnetic properties that make it useful for applications such as memristors and as a contrast agent for magnetic resonance imaging. This article provides a short overview of this evidence, as well as evidence of ferritin structures in vivo and of tunneling in those structures, with an emphasis on ferritin structures in substantia nigra pars compacta (SNc) neurons. Potential biomedical applications that could utilize these ferritin protein nanoparticles are also discussed.


Email Address of Submitting Author

ORCID of Submitting Author


Submitting Author's Institution

Citizen scientist

Submitting Author's Country

  • United States of America