loading page

Enhanced Huffman Coded OFDM with \\Index Modulation
  • +2
  • Shuping Dang ,
  • Shuaishuai Guo ,
  • Justin P. Coon ,
  • Basem Shihada ,
  • Mohamed-Slim Alouini
Shuping Dang
KAUST

Corresponding Author:[email protected]

Author Profile
Shuaishuai Guo
Author Profile
Justin P. Coon
Author Profile
Basem Shihada
Author Profile
Mohamed-Slim Alouini
Author Profile

Abstract

In this paper, we propose an enhanced Huffman coded orthogonal frequency-division multiplexing with index modulation (EHC-OFDM-IM) scheme. The proposed scheme is capable of utilizing all legitimate subcarrier activation patterns (SAPs) and adapting the bijective mapping relation between SAPs and leaves on a given Huffman tree according to channel state information (CSI). As a result, a dynamic codebook update mechanism is obtained, which can provide more reliable transmissions. We take the average block error rate (BLER) as the performance evaluation metric and approximate it in closed form when the transmit power allocated to each subcarrier is independent of channel states. Also, we propose two CSI-based power allocation schemes with different requirements for computational complexity to further improve the error performance. Subsequently, we carry out numerical simulations to corroborate the error performance analysis and the proposed dynamic power allocation schemes. By studying the numerical results, we find that the depth of the Huffman tree has a significant impact on the error performance when the SAP-to-leaf mapping relation is optimized based on CSI. Meanwhile, through numerical results, we also discuss the trade-off between error performance and data transmission rate and investigate the impacts of imperfect CSI on the error performance of EHC-OFDM-IM.
Apr 2020Published in IEEE Transactions on Wireless Communications volume 19 issue 4 on pages 2489-2503. 10.1109/TWC.2020.2965524