Fast Sparse PCA via Positive Semidefinite Projection for Unsupervised Feature Selection
In the field of unsupervised feature selection, sparse principal component analysis (SPCA) methods have attracted more and more attention recently. Compared to spectral-based methods, SPCA methods don’t rely on the construction of similarity matrix and show better feature selection ability on real-world data. The original SPCA formulates a nonconvex optimization problem. And existing convex SPCA methods reformulate SPCA as a convex model by regarding reconstruction matrix as optimization variable. However, they are lack of constraints equivalent to the orthogonality restriction in SPCA, leading to larger solution space. In this paper, it’s proved that the optimal solution to a convex SPCA model falls onto the PSD cone. A new convex SPCA model with PSD constraint is then proposed. Further, a two-step fast optimization algorithm is presented to solve the proposed model. Firstly, adopt the derivative of objective function to obtain the unconstrained solution. Secondly, project the solution onto the PSD cone.The convergence of the proposed optimization algorithm is studied. With PSD projection, the proposed method takes less number of iterations and running time than other convex SPCA methods and has stronger feature selection ability. Experiments on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of the proposed method.
Funding
National Science Foundation of China under Grants 61025006, 60872134, and 61901482
China Postdoctoral Science Foundation under Grant 2018M633667
History
Email Address of Submitting Author
zjj20212035@163.comORCID of Submitting Author
0000-0002-4274-517XSubmitting Author's Institution
National University of Defense TechnologySubmitting Author's Country
- China