TechRxiv
IEEE_TCST[HTC+BH](20211219).pdf (2.84 MB)
Download file

Fault-tolerant Soft Sensors for Dynamic Systems

Download (2.84 MB)
preprint
posted on 01.02.2022, 03:01 authored by Hongtian ChenHongtian Chen, Biao Huang
Unpredicted faults occurring in automation systems deteriorate the performance of soft sensors and may even lead to incorrect results. In order to address the problem, this study develops three novel data-driven approaches for development of soft sensors. The three proposed soft sensors have fault-tolerant abilities. They are respectively called measurement space-aided scheme (MSaS), subspace-aided scheme (SSaS), and improved MSaS (IMSaS). As means to obtain more accurate results of soft sensors in the online phase, 1) MSaS constructs an optimal estimator of faults in the measurement space; 2) SSaS removes the influences caused by unknown sensor faults with the aid of a constructed subspace; 3) IMSaS is an improved version of MSaS, eliminating the influences of the past prediction error that may accumulate and affect the current prediction result. They are the output-driven fault-tolerant soft sensors because their implementations rely on system measurements only. Furthermore, performance analysis is also conducted to investigate the estimation errors. Both the sufficient and necessary conditions for these designs are provided, and illustrations of the effectiveness and feasibility of the three proposed fault-tolerant soft sensors based on two case studies are given.

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC)

Natural Sciences and Engineering Research Council

Find out more...

History

Email Address of Submitting Author

hongtian.chen@ieee.org

Submitting Author's Institution

University of Alberta

Submitting Author's Country

Canada

Usage metrics

Licence

Exports