TechRxiv
Hate Speech Article.pdf (324.17 kB)
Download file

Hate Speech Recognition in multilingual text: Hinglish Documents

Download (324.17 kB)
preprint
posted on 05.05.2022, 06:38 authored by arun kumar yadav, Abhishek Kumar, Shivani ., Kusum ., Mohit KumarMohit Kumar, Divakar Yadav
In this paper, we apply and evaluate several machine learning and deep learning methods, along with various feature extraction and word-embedding techniques, on a consolidated dataset of 20600 instances, for hate speech detection from tweets and comments in Hinglish. The experimental results reveal that deep learning models perform better than machine learning models in general. Among the deep learning models, the CNN-BiLSTM model with word2vec word embedding provides the best results. The model yields 0.876 accuracy, 0.830 precision, 0.840 recall and 0.835 F1-score. These results surpass the recent state-of-art approaches.

History

Email Address of Submitting Author

mohitk2908@gmail.com

ORCID of Submitting Author

0000-0002-1304-151X

Submitting Author's Institution

National Institute of Technology Hamirpur

Submitting Author's Country

India

Usage metrics

Licence

Exports