TechRxiv
ITS paper.pdf (2.71 MB)

Improved S-AF and S-DF Relaying Schemes using Machine Learning based Power Allocation over Cascaded Rayleigh Fading Channels

Download (2.71 MB)
preprint
posted on 2021-01-07, 13:42 authored by Yahia AlghoraniYahia Alghorani, samuel pierre
We investigate the performance of a dual-hop intervehicular communications (IVC) system with relay selection strategy. We assume a generalized fading channel model, known as cascaded Rayleigh (also called n*Rayleigh), which involves the product of n independent Rayleigh random variables. This channel model provides a realistic description of IVC, in contrast to the conventional Rayleigh fading assumption, which is more suitable for cellular networks. Unlike existing works, which mainly consider double-Rayleigh fading channels (i.e, n = 2); our system model considers the general cascading order n; for which we derive an approximate analytic solution for the outage probability under the considered scenario. Also, in this study we propose a machine learning-based power allocation scheme to improve the link reliability in IVC. The analytical and simulation results show that both selective decode-and-forward (S-DF) and amplify-and-forward (S-AF) relaying schemes have the same diversity order in the high signal-to-noise ratio regime. In addition, our results indicate that machine learning algorithms can play a central role in selecting the best relay and allocation of transmission power.

History

Email Address of Submitting Author

yahia.alghorani@ieee.org

ORCID of Submitting Author

https://orcid.org/0000-0002-0980-7295

Submitting Author's Institution

Lakehead University

Submitting Author's Country

  • Canada