TechRxiv
SmartHome.pdf (755.08 kB)

In-House Deep Environmental Sentience for Smart Homecare Solutions toward Ageing Society

Download (755.08 kB)
preprint
posted on 25.08.2020, 03:22 by PHILIP EASOM, Ahmed Bouridane, Feiyu Qiang;, Li Zhang, Carolyn Downs, Richard Jiang

With an increasing amount of elderly people needing home care around the clock, care workers are not able to keep up with the demand of providing maximum support to those who require it. As medical costs of home care increase the quality is care suffering as a result of staff shortages, a solution is desperately needed to make the valuable care time of these workers more efficient. This paper proposes a system that is able to make use of the deep learning resources currently available to produce a base system that could provide a solution to many of the problems that care homes and staff face today. Transfer learning was conducted on a deep convolutional neural network to recognize common household objects was proposed. This system showed promising results with an accuracy, sensitivity and specificity of 90.6%, 0.90977 and 0.99668 respectively. Real-time applications were also considered, with the system achieving a maximum speed of 19.6 FPS on an MSI GTX 1060 GPU with 4GB of VRAM allocated.

History

Email Address of Submitting Author

r.jiang2@lancaster.ac.uk

Submitting Author's Institution

Lancaster University

Submitting Author's Country

United Kingdom

Licence

Exports

Licence

Exports