AMC Paper IEEE WCL 3.pdf (696.12 kB)
Download fileMassive MIMO Adaptive Modulation and Coding Using Online Deep Learning
preprint
posted on 2021-07-14, 13:07 authored by Evgeny BobrovEvgeny Bobrov, Dmitry Kropotov, Hao Lu, Danila ZaevThe paper describes an online deep learning algorithm for the adaptive modulation and coding in 5G Massive MIMO. The algorithm is based on a fully connected neural network, which is initially trained on the output of the traditional algorithm and then is incrementally retrained by the service feedback of its output. We show the advantage of our solution over the state-of-the-art Q-Learning approach. We provide system-level simulation results to support this conclusion in various scenarios with different channel characteristics and different user speeds. Compared with traditional OLLA our algorithm shows 10% to 20% improvement of user throughput in full buffer case.
Funding
The work was supported by Huawei Technologies
History
Email Address of Submitting Author
eugenbobrov@ya.ruORCID of Submitting Author
0000-0002-2584-6649Submitting Author's Institution
M. V. Lomonosov Moscow State UniversitySubmitting Author's Country
- Russian Federation