Model Generalizability Investigation for GFCE-MRI Synthesis in NPC Radiotherapy Using Multi-institutional Patient-based Data Normalization
In this study, we aimed at investigating generalizability of GFCE-MRI model using data from seven institutions by manipulating heterogeneity of training MRI data under two popular normalization approaches. A multimodality-guided synergistic neural network (MMgSN-Net) was applied to map from T1-weighted and T2-weighted MRI to contrast-enhanced MRI (CE-MRI) for GFCE-MRI synthesis in patients with nasopharyngeal carcinoma. MRI data from three institutions were used separately to generate three uni-institution models and jointly for a tri-institution model. Min-Max and Z-Score were applied for data normalization of each model. MRI data from the remaining four institutions served as external cohorts for model generalizability assessment. Quality of GFCE-MRI was quantitatively evaluated against ground-truth CE-MRI using mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). Results showed that performance of all uni-institution models remarkably dropped on the external cohorts. By contrast, model trained using multi-institutional data with Z-Score normalization yielded significantly improved model generalizability
Funding
Development of A Patient Stratification Software Tool for Identifying Nasopharyngeal Carcinoma Patients for Adaptive Radiation Therapy
Innovation and Technology Commission
Find out more...P0035421
SGDX20201103095002019
JCYJ20210324130209023
History
Email Address of Submitting Author
wen25.li@connect.polyu.hkORCID of Submitting Author
0000-0002-9550-3828Submitting Author's Institution
The Hong Kong Polytechnic UniversitySubmitting Author's Country
- Hong Kong