TechRxiv
_SPA_2020__Optimization_of_the_PointPillars_network_for_3D_object_detection_in_point_clouds(1).pdf (328.48 kB)
Download file

Optimization of the PointPillars network for 3D object detection in point clouds

Download (328.48 kB)
preprint
posted on 2020-07-02, 03:15 authored by Joanna Stanisz, Konrad Lis, Tomasz KryjakTomasz Kryjak, Marek Gorgon
In this paper we present our research on the optimisation of a deep neural network for 3D object detection in a point cloud. Techniques like quantisation and pruning available in the Brevitas and PyTorch tools were used. We performed the experiments for the PointPillars network, which offers a reasonable compromise between detection accuracy and calculation complexity. The aim of this work was to propose a variant of the network which we will ultimately implement in an FPGA device. This will allow for real-time LiDAR data processing with low energy consumption. The obtained results indicate that even a significant quantisation from 32-bit floating point to 2-bit integer in the main part of the algorithm, results in 5%-9% decrease of the detection accuracy, while allowing for almost a 16-fold reduction in size of the model.

History

Email Address of Submitting Author

tomasz.kryjak@agh.edu.pl

ORCID of Submitting Author

0000-0001-6798-4444

Submitting Author's Institution

AGH University of Science and Technology

Submitting Author's Country

  • Poland