loading page

Physical Layer Security in Multi-hop Cooperative Wireless Relaying
  • Sajad Hatamnia ,
  • Mahdi Morafah ,
  • Bill Lin
Sajad Hatamnia
Author Profile
Mahdi Morafah
UC San Diego

Corresponding Author:[email protected]

Author Profile

Abstract

In the last decade, multi-hop cooperation has evolved bringing several advantages including coverage improvement, more reliability of wireless links, and power consumption reduction. Still, its application has raised several challenges, such as the need for secure transmission at each hop, algorithms to perform relay selection and the accurate models to facilitate performance analysis. This paper addresses the problem of physical layer (PHY) security in a multi-hop wireless cooperative network, where communication at each hop is assisted by multiple relays forming a cluster, each cluster being surrounded by multiple eavesdroppers which together may tap transmissions from both the source and the relays. The main focus of the study is on analyzing the benefits of various relay selection schemes for protecting the source-destination transmission against the eavesdroppers, which can collude and combine information via diversity combining techniques. To be specific, four relay selection schemes, which differ in the way they employ available measures link quality, are considered to deliver the source information to the destination via a decode-and-forward (DF) strategy. To evaluate the security performance of the multi-hop cooperative link in the presence of colluding eavesdroppers, we derive novel closed-form analytical expressions for the secrecy outage probability (SOP) with consideration of special cases of practical interest.