TechRxiv
7513.pdf (4.96 MB)

SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection

Download (4.96 MB)
preprint
posted on 01.09.2020, 19:51 by Rui Fan, Hengli Wang, Peide Cai, Ming Liu
Freespace detection is an essential component of visual perception for self-driving cars. The recent efforts made in data-fusion convolutional neural networks (CNNs) have significantly improved semantic driving scene segmentation. Freespace can be hypothesized as a ground plane, on which the points have similar surface normals. Hence, in this paper, we first introduce a novel module, named surface normal estimator (SNE), which can infer surface normal information from dense depth/disparity images with high accuracy and efficiency. Furthermore, we propose a data-fusion CNN architecture, referred to as RoadSeg, which can extract and fuse features from both RGB images and the inferred surface normal information for accurate freespace detection. For research purposes, we publish a large-scale synthetic freespace detection dataset, named Ready-to-Drive (R2D) road dataset, collected under different illumination and weather conditions. The experimental results demonstrate that our proposed SNE module can benefit all the state-of-the-art CNNs for freespace detection, and our SNE-RoadSeg achieves the best overall performance among different datasets.

Funding

National Natural Science Foundation of China (Grant No. U1713211)

Research Grant Council of Hong Kong SAR Government (Project No. 11210017)

History

Email Address of Submitting Author

rui.fan@ieee.org

ORCID of Submitting Author

0000-0003-2593-6596

Submitting Author's Institution

UC San Diego

Submitting Author's Country

United States of America

Licence

Exports