TechRxiv
Shape_and_orientation_classification_of_objects_based_on_their_electromagnetic_signature.pdf (615.55 kB)

Shape and orientation classification of objects based on their electromagnetic signatures using convolutional neural networks

Download (615.55 kB)
preprint
posted on 2023-09-08, 21:38 authored by Yasmina ZakyYasmina Zaky, nicolas fortino, Benoit Miramond, Jean-Yves DauvignacJean-Yves Dauvignac

This study addresses the classification of objects using their electromagnetic signatures with Convolutional Neural Networks (CNNs) trained on noiseless data. The singularity expansion method (SEM) was applied to establish a compact model that accurately represents the ultra-wideband scattered field of an object, independently of its orientation and observation angle. To perform the classification, we used a CNN associated with a noise-robust SEM technique to classify different objects based on their characteristic parameters. To validate this approach, we compared the performance of the classifier with and without SEM pre-processing of the scattered field for different noise levels and for object sizes not present in the training set. Moreover, we propose a procedure that determines the direction of the receiving antenna and orientation of an object based on the residues associated with each complex natural resonance. This classification procedure using pre-processed SEM data is promising, especially when generalizing to object sizes not included in the training set.

History

Email Address of Submitting Author

Jean-Yves.Dauvignac@univ-cotedazur.fr

ORCID of Submitting Author

https://orcid.org/0000-0003-3232-9049

Submitting Author's Institution

Université Côte d'Azur, LEAT (Laboratoire d'Electronique, Antennes et Télécommunications)

Submitting Author's Country

  • France