TechRxiv
SpectralImageClusteringOnDECTWithFuncRegressionMixtures.pdf (1.44 MB)
Download file

Spectral image clustering on dual-energy CT scans using functional regression mixtures

Download (1.44 MB)
preprint
posted on 04.02.2022, 23:22 by Segolene BrivetSegolene Brivet, Faicel Chamroukhi, Mark Coates, Reza Forghani, Peter Savadjiev
Dual-energy computed tomography (DECT) is an advanced CT scanning technique enabling material characterization not possible with conventional CT scans. It allows the reconstruction of energy decay curves at each 3D image voxel, representing varying image attenuation at different effective scanning energy levels. In this paper, we develop novel functional data analysis (FDA) techniques and adapt them to the analysis of DECT decay curves. More specifically, we construct functional mixture models that integrate spatial context in mixture weights, with mixture component densities being constructed upon the energy decay curves as functional observations. We design unsupervised clustering algorithms by developing dedicated expectation maximization (EM) algorithms for the maximum likelihood estimation of the model parameters.
To our knowledge, this is the first article to adapt statistical FDA tools and model-based clustering to take advantage of the full spectral information provided by DECT.
We evaluate our methods on 91 head and neck cancer DECT scans. Institutional review board approval was obtained for this study with waiver of informed consent. We compare our unsupervised clustering results to tumor contours traced manually by radiologists, as well as to several baseline algorithms. Given the inter-rater variability even among experts at delineating head and neck tumors, and given the potential importance of tissue reactions surrounding the tumor itself, our proposed methodology has the potential to add value in downstream machine learning applications for clinical outcome prediction based on DECT data in head and neck cancer.

Funding

Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number 260250]

French National Research Agency (ANR) [grant SMILES ANR-18-CE40-0014]

Fonds de recherche du Québec - Santé (FRQS)

Fondation de l’association des radiologistes du Québec (FARQ)

History

Email Address of Submitting Author

segolene.brivet@mail.mcgill.ca

ORCID of Submitting Author

0000-0002-4524-8603

Submitting Author's Institution

McGill University

Submitting Author's Country

Canada