ST2.pdf (396.65 kB)

Star Topology Convolution for Graph Representation Learning

Download (396.65 kB)
posted on 08.02.2021, 16:57 by Chong Wu, Zhenan Feng, Jiangbin Zheng, Houwang Zhang, Jiawang Cao, Hong YAN

We present a novel graph convolutional method called star topology convolution (STC). This method makes graph convolution more similar to conventional convolutional neural networks (CNNs) in Euclidean feature space. Unlike most existing spectral methods, this method learns subgraphs which have a star topology rather than a fixed graph. Due to the good properties of a star topology, STC is graph/subgraph free. It has fewer parameters in its convolutional filter and is inductive so that it is more flexible and can be applied to large and evolving graphs. Similar to CNNs in Euclidean feature space, the convolutional filter is learnable and localized and maintains a good weight sharing property. To test the method, STC was compared to state-of-the-art spectral methods and spatial methods in a supervised learning setting on five benchmark datasets: Cora, Citeseer, Pubmed, Ogbn-Arxiv, and Ogbn-MAG. The experiment results show that STC outperforms other methods especially on large graphs. In an essential protein identification task, STC also outperforms state-of-the-art essential protein identification methods.


Hong Kong Research Grants Council (Project 11200818)

City University of Hong Kong (Project 9610460)

Hong Kong Innovation and Technology Commission


Email Address of Submitting Author

ORCID of Submitting Author


Submitting Author's Institution

Department of Electrical Engineering, City University of Hong Kong

Submitting Author's Country