TechRxiv
The Strength of Nesterov's Extrapolation2019.pdf (1.44 MB)
0/0

The Strength of Nesterov's Extrapolation2019

Download (1.44 MB)
preprint
posted on 21.01.2020 by Qing Tao
The extrapolation strategy raised by Nesterov, which can accelerate the convergence rate of gradient descent methods by orders of magnitude when dealing with smooth convex objective, has led to tremendous success in training machine learning tasks. In this paper, we theoretically study its strength in the convergence of individual iterates of general non-smooth convex optimization problems, which we name \textit{individual convergence}. We prove that Nesterov's extrapolation is capable of making the individual convergence of projected gradient methods optimal for general convex problems, which is now a challenging problem in the machine learning community. In light of this consideration, a simple modification of the gradient operation suffices to achieve optimal individual convergence for strongly convex problems, which can be regarded as making an interesting step towards the open question about SGD posed by Shamir \cite{shamir2012open}. Furthermore, the derived algorithms are extended to solve regularized non-smooth learning problems in stochastic settings. {\color{blue}They can serve as an alternative to the most basic SGD especially in coping with machine learning problems, where an individual output is needed to guarantee the regularization structure while keeping an optimal rate of convergence.} Typically, our method is applicable as an efficient tool for solving large-scale $l_1$-regularized hinge-loss learning problems. Several real experiments demonstrate that the derived algorithms not only achieve optimal individual convergence rates but also guarantee better sparsity than the averaged solution.

History

Email Address of Submitting Author

taoqing@gmail.com

Submitting Author's Institution

IA, CAS

Submitting Author's Country

China

Licence

Exports

Licence

Exports