The Use of Reinforcement Learning in Gaming The Breakout Game Case Study.pdf

This paper provides a comparative analysis between Deep Q Network (DQN) and Double Deep Q Network (DDQN) algorithms based on their hit rate, out of which DDQN proved to be better for Breakout game. DQN is chosen over Basic Q learning because it understands policy learning using its neural network which is good for complex environment and DDQN is chosen as it solves overestimation problem (agent always choses non-optimal action for any state just because it has maximum Q-value) occurring in basic Q-learning.